Понятие электрической цепи и ее составные части

Энергия электрического поля

Рассмотрим систему из двух проводников, на которых распределены равные по модулю, но противоположные по знаку заряды. Опыт показывает, что разность потенциалов между этими проводниками пропорциональна модулю заряда: U=q/C, где С — постоянный коэффициент, определяемый в общем случае размерами проводников, их формой и расположением в пространстве, а также диэлектрической проницаемостью среды, в которую помещены проводники. Величину С, равную отношению заряда системы проводников к разности потенциалов между ними, называют электрической емкостью (короче — электроемкостью) данной системы проводников:

C = q/U

Единицей электроемкости является кулон на вольт (Кл/В). В честь М. Фарадея эта единица получила название фарад (Ф): 1 Ф = 1 Кл/В.

Систему из двух изолированных друг от друга металлических проводников, между которыми находится диэлектрик, называют конденсатором.

Накопление энергии в электрическом поле конденсатора

где

— заряд, Кл;

— напряжение, В;

— электрическая емкость конденсатора, Ф.

Если напряжение источника в цепи конденсатора изменяется, то происходит перераспределение зарядов на его пластинах, что приводит к возникновению тока в цепи:

Мощность конденсатора положительна при его заряде и отрицательна при разряде конденсатора.

Если напряжение возрастает, то i>0. Это значит, что ток и напряжение совпадают по направлению, энергия электрического поля в конденсаторе возрастает.

При убывании напряжения ток также уменьшается, энергия возвращается обратно к источнику.

Величины R(OM), L(Гн), С(Ф) зависят от свойств самого устройства, его конструкции и являются параметрами этого устройства.

Пассивные элементы электрической цепи

Главными пассивными элементами электрических цепей являются индуктивные, резистивные и емкостные. Чтобы понять их силовые характеристики, необходимо рассмотреть их при постоянном токе.

Определение 2

Электротехническое устройство, которое обладает сопротивлением и применяется для ограничения электрического тока, называется резистором.

Резистивными элементами называются идеализированные модели резисторов. Основной величиной, которая характеризует резистор, является сопротивление $R$. Определить его можно из следующего соотношения:

$U_ab = RI$ — закон Ома.

Сопротивление можно измерить в Омах: $ = = \frac {B}{A} = Ом$

К пассивным элементам также можно отнести катушку индуктивности L.

Катушка – это обмотка изолированного провода, который намотан на каркас или без каркаса (имеются выводы для присоединения).

$L$ – это параметр, определяющий способность катушки формировать магнитное поле. Он напрямую зависит от геометрических параметров катушки, количества витков, а также от магнитных свойств сердечника, на который наматывается катушка.

Из-за возникновения магнитного поля электрическая цепь пронизывается магнитным потоком. Для того чтобы охарактеризовать катушку индуктивности, как основного элемента цепи, нужно найти потокосцепление $\psi$. Индуктивность $L$ – это коэффициент пропорциональности между $\psi$ и $l$:

$L = \frac {\psi}{i}$

$L = \frac {2W_M}{l^2}$

Между двумя проводниками, которые разделяются диэлектриком, есть электрическая емкость. Коэффициент пропорциональности С в таком случае называют емкостью:

$C = \frac {q}{U}$

$W_э = \frac {CU^2}{2} = \frac {q^2}{2C}$

Трехфазные электрические цепи

Любая трехфазная система состоит из трех отдельных электрических цепей, в каждой из которых действует синусоидальная электродвижущая сила с одинаковой частотой, создаваемая одним и тем же источником энергии. Необходимая энергия обычно создается трехфазным генератором. Между цепями образуется сдвиг на 120 градусов.

Основным преимуществом трехфазной цепи считается ее уравновешенность. Она заключается в суммарной мгновенной мощности, принимающей постоянную величину на все время действия ЭДС. В самом трехфазном генераторе существует три самостоятельные обмотки, сдвинутые относительно друг друга на 120 градусов, так же как и начальные фазы электродвижущей силы.

Если для соединения каждой фазы использовать отдельный провод, то в конечном итоге это привело бы к созданию несвязной системы из шести проводников. Прежде всего, это невыгодно с точки зрения экономии, поскольку получается значительный перерасход материалов. Поэтому были разработаны наиболее оптимальные связанные системы соединения трехфазных электрических цепей.

Одним из таких способов является соединение звездой, когда все три фазы обмоток соединяются в общей нулевой точке. Таким образом, получается трех- или четырехпроводная система. В последнем варианте предполагается использование нулевого провода. Он может не применяться при наличии симметричной системы, с одинаковыми токами фаз. Однако в случае несимметричной нагрузки с разницей фазных токов, в нулевом проводе создается ток, равный сумме векторов этих фазных токов. При выходе из строя одной из фаз, нулевой провод может заменить ее и предотвратить аварийную ситуацию в трехфазной цепи. Однако в этом качестве его можно использовать лишь кратковременно, поскольку данный провод рассчитан на более низкие нагрузки, по сравнению с фазами.

Другой способ – соединение треугольником, когда конец одной обмотки соединяется с началом другой, образуя, таким образом, замкнутый контур. Каждая фаза находится под линейным напряжением, равным фазному напряжению. Однако фазный ток будет отличаться от линейного в меньшую сторону в 1,72 раза.

Схема электрической цепи

Буквенные обозначения элементов на электрических схемах

Мощность электрического тока

Расчет электрической цепи

Трехфазная система переменного тока

Метод преобразования электрической цепи

Как определить силу тока в отдельных контурах сложных схем? Для решения практических задач не всегда нужно уточнение электрических параметров на каждом элементе. Чтобы упростить вычисления, используют специальные методики преобразования.

Расчет цепи с одним источником питания

Для последовательного соединения пользуются рассмотренным в примере суммированием электрических сопротивлений:

Rэкв = R1 + R2 + … + Rn.

Контурный ток – одинаковый в любой точке цепи. Проверять его можно в разрыве контрольного участка мультиметром. Однако на каждом отдельном элементе (при отличающихся номиналах) прибор покажет разное напряжение. По второму закону Кирхгофа можно уточнить результат вычислений:

E = Ur1 + Ur2 + Urn.

Параллельное соединение резисторов, схемотехника и формулы для расчетов

В этом варианте в полном соответствии с первым постулатом Кирхгофа токи разделяются и соединяются во входных и выходных узлах. Показанное на схеме направление выбрано с учетом полярности подключенного аккумулятора. По рассмотренным выше принципам сохраняется базовое определение равенства напряжений на отдельных компонентах схемы.

Как найти ток в отдельных ветвях, демонстрирует следующий пример. Для расчета приняты следующие исходные значения:

  • R1 = 10 Ом;
  • R2 = 20 Ом;
  • R3= 15 Ом;
  • U = 12 V.

По следующему алгоритму будут определяться характеристики цепи:

базовая формула для трех элементов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3.

  • подставив данные, вычисляют Rобщ = 10 * 20 * 15 / (10*20 + 20*15 +10*15) = 3000 /(200+300+150) = 4,615 Ом;
  • I = 12/ 4,615 ≈ 2,6 А;
  • I1 = 12/ 10 = 1,2 А;
  • I2 = 12/20 = 0,6 А;
  • I3 = 12/15 = 0,8 А.

Как и в предыдущем примере, рекомендуется проверить результат вычислений. При параллельном соединении компонентов должно соблюдаться равенство токов на входе и суммарного значения:

I = 1,2 + 0,6 + 0,8 = 2,6 А.

Если применяется синусоидальный сигнал источника, вычисления усложняются. При включении в однофазную розетку 220V трансформатора придется учитывать потери (утечку) в режиме холостого хода. В этом случае существенное значение имеют индуктивные характеристики обмоток и коэффициент связи (трансформации). Электрическое сопротивление (ХL) зависит от следующих параметров:

  • частоты сигнала (f);
  • индуктивности (L).

Вычисляют ХL по формуле:

ХL = 2π * f * L.

Чтобы находить сопротивление емкостной нагрузки, подойдет выражение:

Хc = 1/ 2π * f * C.

Следует не забывать о том, что в цепях с реактивными компонентами сдвигаются фазы тока и напряжения.

Расчет разветвленной электрической цепи с несколькими источниками питания

Пользуясь рассмотренными принципами, вычисляют характеристики сложных схем. Ниже показано, как найти ток в цепи при наличии двух источников:

  • обозначают компоненты и базовые параметры во всех контурах;
  • составляют уравнения для отдельных узлов: a) I1-I2-I3=0, b) I2-I4+I5=0, c) I4-I5+I6=0;
  • в соответствии со вторым постулатом Кирхгофа, можно записать следующие выражения для контуров: I) E1=R1 (R01+R1)+I3*R3, II) 0=I2*R2+I4*R4+I6*R7+I3*R3, III) -E2=-I5*(R02+R5+R6)-I4*R4;
  • проверка: d) I3+I6-I1=0, внешний контур E1-E2=I1*(r01+R1)+I2*R2-I5*(R02+R5+R6)+I6*R7.

Пояснительная схема к расчету с двумя источниками

Условные обозначения источников электрической энергии и элементов цепей

Условное обозначение Элемент
Идеальный источник ЭДС
Е — электродвижущая сила, Е = const
Ro = 0 — внутреннее сопротивление
Идеальный источник тока I = const
Rвн- внутреннее сопротивление источника тока,
Rвн>>Rнаг
Активное сопротивление
R = const
Индуктивность L = const
Емкость С = const

К химическим источникам тока относят гальванические элементы и аккумуляторы. В них заряды переносятся в результате химических реакций. При этом в гальваническом элементе реагенты расходуются необратимо, а в аккумуляторе они могут восстанавливаться путем пропускания через аккумулятор электрического тока противоположного направления от других источников.

Источники электрической энергии относятся к группе активных элементов электротехнических устройств. Если Rо=0 и электродвижущая сила (ЭДС) Е=const, то источник называется идеальным. Аккумуляторная батарея по своим параметрам близка к идеальному источнику ЭДС.

К группе пассивных элементов относятся: активное сопротивление R, индуктивность L и емкость С.

В электротехнических устройствах одновременно протекают три энергетических процесса:

1 В активном сопротивлении в соответствии с законом Джоуля — Ленца происходит преобразование электрической энергии в тепло.

Мощность, по определению равна отношению работы к промежутку времени, за который эта работа совершается. Следовательно, мощность тока для участка цепи

p = A/t = ui

Полная мощность, вырабатываемая генератором, равна

где R- полное сопротивление замкнутой цепи, называемое омическим или активным;

Р, I — мощность и ток в цепи постоянного тока.

р, i, и — мгновенные значения активной мощности, тока и напряжения в цепи переменного тока,

g — активная проводимость или величина, обратная сопротивлению g=1/R измеряется в сименсах (См).

В соответствии с законом сохранения энергии работа есть мера изменения различных видов энергии. Так, в электродвигателе за счет работы тока возникает механическая энергия, протекают химические реакции и т. д. На резисторах происходит необратимое преобразование энергии электрического тока во внутреннюю энергию проводника.

Если в проводнике под действием тока не происходит химических реакций, то температура проводника должна измениться. Изменение внутренней энергии проводника (количество теплоты) Q равно работе А, которую совершает суммарное поле при перемещении зарядов:

Q = А = uit

Воспользовавшись законом Ома, получим два эквивалентных выражения:

Это и есть закон Джоуля — Ленца.

Если нужно сравнить два резистора по характеру тепловых процессов, происходящих в них, то нужно предварительно выяснить: протекает ли по ним одинаковый ток или они находятся под одинаковым напряжением?

Если по двум резисторам протекают одинаковые токи, то согласно формуле за одно и то же время больше возрастает внутренняя энергия резистора с большим сопротивлением. С таким случаем мы встречаемся, например, в цепи с последовательным соединением резисторов. Последнее обстоятельство следует учитывать при включении в сеть нагрузки (электроплиток, утюгов, электродвигателей и т. д.). Сопротивление подводящих проводов при этом должно быть значительно меньше, чем сопротивление нагрузки. При несоблюдении этого условия в проводах выделится большое количество теплоты, что может привести к их загоранию.

Если же оба резистора находятся под одинаковым напряжением, то согласно формуле быстрее будет нагреваться резистор с меньшим сопротивлением. Такой эффект, в частности, наблюдают при параллельном соединении резисторов.

Термин «сопротивление» применяется для условного обозначения элемента электрической цепи и для количественной оценки величины R.

Сопротивление измеряется в омах (Ом). 1 Ом — это сопротивление проводника, сила тока в котором равна 1 А, если на концах его поддерживается разность потенциалов 1 В:

1 Ом = 1 В/1 А

Электрическое сопротивление R материалов с изменением температуры меняется. Сопротивление металлических проводников линейно возрастает с температурой. У полупроводников и электролитов с увеличением температуры удельное сопротивление уменьшается, причем нелинейно.

Для сравнения проводников по степени зависимости их сопротивления от температуры t вводится величина a, называемая температурным коэффициентом сопротивления. Отсюда

Для практических расчетов в электрических цепях величину R можно принимать постоянной. В этом случае зависимость напряжения на сопротивлении R от силы тока (вольт-амперная характеристика) будет называться линейной. Электрические цепи, в которые включены постоянные по величине сопротивления, также будут линейными.

Контур, узел, ветвь

Для описания и анализа схем используются следующие термины:

  • Ветвь — участок с одним или несколькими компонентами соединенными последовательно;
  • Узел — место соединения двух и более ветвей;
  • Контур — совокупность ветвей, образующих для тока замкнутый контур. Один из узлов в контуре должен быть и началом и концом пути. Остальные узлы должны встречаться не более одного раза.

Очень полезным элементом электрической цепи является предохранитель. Он предотвращает перегорание элементов цепи в случае перегрева. Предохранитель содержит легкоплавкий проводник, который перегорает в случае превышения допустимых параметров. Поменять предохранитель легче, чем найти сгоревший элемент среди сотен подобных элементов.

Рис. 3. Примеры участков схем: ветвь, узел, контур:.

Что мы узнали?

Итак, мы узнали что такое электрическая цепь и ее составные части. Все электрические цепи состоят из источников, проводников, потребителей и переключающих устройств.

Тест по теме

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

Элементы цепи

Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода.

Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

Источниками энергии в схеме такой цепи выступают аккумуляторы, генераторы тока и гальванические элементы. Их еще называют

В приемниках электрической цепи электроэнергия преобразовывается в другой тип энергии. Таким оборудованием бывают двигатели, нагреватели, лампы и т. д.

Стоит отметить, что система может быть внешней и внутренней. Они отличаются наличием приемника. Открытая цепь имеет его в своем составе, а закрытая — только

Из каких элементов состоит электрическая цепь

Новички нередко задаются вопросом, из каких важных элементов состоит электрическая цепь. Такими составляющими являются:

  • Источник тока,
  • Нагрузка,
  • Проводник.

В состав могут в том числе входить такие элементы, как устройства коммутации, а также приборы защиты.

Условные обозначения электроустройств

Для возникновения тока, необходимо соединить две точки, одна из которых имеет избыток электронов по сравнению с другой. Другими словами, необходимо создать разность потенциалов между этими двумя точками. Как раз для получения разности потенциалов в цепи применяется источник тока.

Важно! Нагрузкой считается любой потребитель электрической энергии. Этот фактор оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока

Ток от источника энергии к нагрузке течёт по проводникам. В качестве кабеля можно использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Схемы электрических цепей

Элементы электрических цепей соединяются в схемы разными способами. Для каждой из схем существуют определенные закономерности, которые сформулированы и установлены учеными Омом и Кирхгофом.

Соединение потребителей в электрических цепях может быть трех видов:

  1. Последовательное соединение. В таком случае с увеличением количества потребителей происходит увеличение общего сопротивления электрической цепи. Из этого следует, что значение общего сопротивления состоит из суммы сопротивлений подключенной нагрузки. Поскольку во всех участках электрической цепи протекает одинаковый ток, то на каждый отдельный элемент распределяется только часть общего напряжения. Если какое-то устройство или прибор останавливает свою работу, то происходит разрыв электрической цепи. Иными словами, если из строя выйдет хотя бы одна лампочка, остальные тоже не будут работать (например, елочная гирлянда). Но в последовательную цепь можно включить огромное количество элементов, каждый из которых рассчитан на меньшее напряжение.
  2. Параллельное соединение. При такой схеме к двум точкам электрической цепи подключается несколько потребителей. На каждом участке напряжение будет приравниваться тому напряжению, которое приложено к каждой узловой точке. Данная схема позволяет увидеть возможность протекания электрического тока различными путями. Ток, который протекает у места разветвления, дальше проходит по двум нагрузкам, что имеют определенное сопротивление. В результате этого он приравнивается сумме токов, которые расходятся от данной точки. Происходит снижение сопротивления с увеличением ее общей проходимости. Благодаря соединению обеспечивается независимая работа потребителей. Если из строя выйдет один из них, то остальные потребители будут работать слаженно, поскольку цепь не разрывается.
  3. Комбинированное соединение. Большинство приборов на практике включаются в электрическую цепь сразу двумя способами (параллельно и последовательно). Поэтому подобные соединения носят название комбинированные. Например, вся защитная аппаратура соединяется последовательно, тем самым, обеспечивая разрыв цепи. Лампочки и розетки, всегда включаются параллельно, исключая взаимодействие между собой. Частое использование комбинированного соединения вызвано различным энергопотреблением. Их сопротивления при постоянном напряжении будут отличаться между собой. Комбинированное соединение позволяет распределить нагрузку на линиях и предотвратить перегрузку.

Электрическая цепь, которая изображена графически при помощи знаков и символов, носит название «электрическая схема».

Она представлена в виде идеализированной цепи, которая является расчетной моделью реальной электрической цепи. Иногда она называется эквивалентной схемой замещения. По возможности данная схема должна отражать реальные процессы, что происходят в действительности. Каждый реальный элемент цепи при расчетах заменяется элементами схемы.

В цепях постоянного электрического тока используются два элемента: резистивный элемент с сопротивлением $R$ и источник энергии с внутренним сопротивлением $r_0$. Под внутренним сопротивлением генератора понимается сопротивление всех его внутренних элементов электрическому току.

Сопротивление приемника $R$ может охарактеризовать потребление электрической энергии, иными словами, превращение электроэнергии в другие виды энергии с выделением мощности:

$P = l^2 R$

Для того чтобы провести анализ электрической цепи важно выделить несколько понятий: ветвь, узел, контур. Ветвь – это участок цепи, который образуется элементами, что соединены последовательно, и характеризуется собственными значениями электрического тока в определенный момент

Ветвь – это участок цепи, который образуется элементами, что соединены последовательно, и характеризуется собственными значениями электрического тока в определенный момент.

Узлом является точка соединения нескольких ветвей. Если в месте пересечения на электрической схеме отображается точка, то на этом месте существует электрическое соединение двух линий. В противном случае узла нет.

Контур – это замкнутая часть электрической цепи, которая состоит из нескольких узлов и ветвей.

Заземление любой точки схемы говорит о том, что потенциал данной точки приравнивается нулю.

Режимы работы цепи

Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.

При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным. Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.

Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.

Принцип действия

Каждая маркировка источников тока определяет принцип его действия. В стандартной ситуации выработка энергии производится посредством взаимодействия составляющих частей, а именно:

  • Механический тип. В результате взаимодействия деталей механизма, возникает трение. Благодаря такому явлению, возникает статическое электричество, преобразуемое в ток.
  • Механические конструкции работают посредством образования последовательно движущихся заряженных частиц. Явление возникает благодаря взаимодействию химического элемента с электролитом. Заряженные частицы покидают структуру кристаллической решётки металла, входя в состав проводящей жидкости.
  • Солнечные батареи (световые источники) работают за счет выбивания заряженных частиц из диэлектрической (кремниевой) основы под воздействием светового потока. Благодаря этому возникает постоянное напряжение.
  • Тепловые. Как правило, это 2 последовательно соединенных металлических основания. Одна часть нагревается, а вторая остается охлажденной. При изменении температурного режима возникает разница температур, в результате чего происходит движение заряженных частиц.

Вам это будет интересно Опасность напряжения шага

Важно! Любое изменение в строении вещества может привести к необратимым последствиям, которые проявятся при работе устройства. https://www.youtube.com/embed/w-Shyno0H58

Активные элементы электрической цепи

В качестве источников энергии в линейных электрических цепях различают источники ЭДС и источники электрического тока. Идеальный источник ЭДС имеет неизменную электродвижущую силу и напряжение на выходных зажимах. У реального источника напряжение и ЭДС изменяются при изменении нагрузки. В электрической схеме это можно учесть последовательным включением резистора $r_0$.

Напряжение $U_ab$ напрямую зависит от тока приемника и приравнивается разности между электродвижущей силой генератора и уменьшением напряжения на его внутреннем сопротивлении $r_0$.

$U_ab = \varphi_a — \varphi_b$

Ток, который протекает по электрической цепи, зависит от сопротивления нагрузки:

$I = \frac {E}{R_H + r_0}$

Если принять ЭДС источника, где внутреннее сопротивление и сопротивление приемника не зависит от напряжения и тока, то внешняя характеристика источника энергии $U_12 = f(l)$ и вольтамперная характеристика приемника $U_ab = f(l)$ будут линейными.

Для источника электрического тока характерно бесконечное внутреннее сопротивление и бесконечное значение электродвижущей силы. При этом выполняется следующее равенство:

$\frac {E}{R_0} = l$

Если $r_0\geqslant R_H$ и $l_0\leqslant l$, то источник энергии находится в режиме, который близок к короткому замыканию. Тогда $l_0=0$/

Определение 1

Источник с внутренним сопротивлением $g_0 = 0$ называется идеальным источником.

3.2.1. Методы анализа линейных электрических цепей постоянного и синусоидального тока

Полученные при этом алгоритмы анализа
электрических цепей постоянного тока
различными методами аналогичны алгоритмам
анализа электрических цепей синусоидального
тока при комплексной замене параметров
элементов цепи.

Даны:величины э.д.с. и токов источников
энергии их внутренние сопротивления,
величины сопротивлений приемников,
дана схема электрической цепи.

Определить:величины токов во всех
элементах цепи.

Постоянный ток– неизменный по
величине и по направлению.

Идеальные емкостный и индуктивный
элементы, а также элемент взаимоиндукции
при анализе цепей постоянного тока не
учитываются т.к.: сопротивление идеального
индуктивного элемента постоянному току
равно нулю, а идеальный емкостный элемент
не пропускает постоянный ток.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector