Схемы и методики гидравлического расчета газопровода

Влияние материала труб на расчет

Для строительства газопроводов можно использовать трубы, изготовленные только из определенных материалов: стали, полиэтилена. В некоторых случаях применяются изделия из меди. Скоро будут массово использоваться металлопластиковые конструкции.


Каждая труба имеет шероховатость, что приводит к линейному сопротивлению, которое влияет на процесс перемещения газа. Причем, этот показатель значительно выше у стальных изделий, чем у пластиковых

Сегодня нужные сведения можно получить только для стальных и полиэтиленовых труб. В результате проектирование и гидравлический расчет можно выполнять только с учетом их характеристик, чего требует профильный Свод правил. А также в документе указаны необходимые для исчисления данные.

Коэффициент шероховатости всегда приравнивается к следующим значениям:

  • для всех полиэтиленовых труб, причем независимо новые они или нет, — 0,007 см;
  • для уже использовавшихся стальных изделий — 0,1 см;
  • для новых стальных конструкций — 0,01 см.

Для каких-либо других видов труб этот показатель в Своде правил не указывается. Поэтому их использовать для строительства нового газопровода не стоит, так как специалисты горгаза могут потребовать внести коррективы. А это опять же дополнительные расходы.

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Для безопасной и безотказной работы газоснабжения его нужно спроектировать и рассчитать

Важно безупречно подобрать трубы для магистралей всех типов давления, обеспечивающих стабильную поставку газа к приборам

Чтобы подбор труб, арматуры и оборудования был максимально точным, производят гидравлический расчет трубопровода. Как его сделать? Признайтесь, вы не слишком сведущи в этом вопросе, давайте разбираться.

Мы предлагаем ознакомиться со скрупулезно подобранной и досконально обработанной информацией о вариантах производства гидравлического расчета для газопроводных систем. Использование представленных нами данных обеспечит подачу в приборы голубого топлива с требующимися параметрами давления. Тщательно проверенные данные опираются на регламент нормативной документации.

В статье предельно обстоятельно рассказано о принципах и схемах производства вычислений. Приведен пример выполнения расчетов. В качестве полезного информативного дополнения использованы графические приложения и видео-инструкции.

.1 Определение пропускной способности сложного газопровода

Для расчета сложной трубопроводной системы согласно рисунку 1 и данным
таблицы 1 воспользуемся методом замены на эквивалентный простой газопровод. Для
этого на основании уравнения теоретического расхода для установившегося
изотермического течения составим уравнение для эквивалентного газопровода и
запишем уравнение.

Таблица 1

Номер индекса i

Наружный диаметр Di , мм

Толщина стенки δi , мм

Длина участка Li , км

1

508

9,52

34

2

377

7

27

3

426

9

17

4

426

9

12

5

377

7

8

6

377

7

9

7

377

7

28

8

630

10

17

9

529

9

27

Рисунок 1 — Схема трубопровода

Для участка l1 запишем
формулу расхода:

 (1.1)

В узловой точке р1 газовый поток разделяется на две нитки: l2 —l4 —l6 иl3 —l5 —l7 далее в точке р6 эти ветви
объединяются. Считаем, что в первой ветке расход Q1 , а на второй ветке Q2.

Для ветви l2 —l4 —l6:

 (1.2)

 (1.3)

 (1.4)

Просуммируем
попарно (1.2), (1.3) и (1.4), получим:

 (1.5)

Для
ветви l3 —l5 —l7:

 (1.6)

 (1.7)

 (1.8)

Просуммируем
попарно (1.6), (1.7) и (1.8), получим:

 (1.9)

Выразим
из выражений (1.5) и (1.9) Q1 и Q2 соответственно:

 (1.10)

 (1.11)

Расход
по параллельному участку равен: Q=Q1+Q2.

 (1.12)

Разность
квадратов давлений для параллельного участка равна:

 (1.13)

Для
ветви l8-l9 запишем:

 (1.14)

Просуммируя (1.1), (1.13) и (1.14), получим:

 (1.15)

Из
последнего выражения можно определить пропускную способность системы. С учетом
формулы расхода для эквивалентного газопровода:

 (1.16)

Найдем соотношение, которое позволяет при заданном LЭК или DЭК найти другой геометрический размер газопровода

 (1.17)

Для того, чтобы определить длину эквивалентного газопровода, построим
развертку системы. Для этого построим все нити сложного трубопровода в одном
направлении, сохраняя структуру системы. В качестве длины эквивалентного
трубопровода примем самую протяженную составляющую газопровода от его начала до
конца, согласно рисунку 2.

Рисунок 2 — Развертка трубопроводной системы

По результатам построения в качестве длины эквивалентного трубопровода
примем длину, равную сумме участков l1 —l3 —l5 —l7 —l8 —l9. Тогда LЭК=131км.

Для расчетов примем следующие допущения: считаем, что течение газа в
трубопроводе подчиняется квадратичному закону сопротивления. Поэтому
коэффициент гидравлического сопротивления рассчитываем по формуле:

 , (1.18)

где k — эквивалентная шероховатость стенок
трубы, мм;

D —
внутренний диаметр трубы, мм.

Для магистральных газопроводов без подкладных колец дополнительные
местные сопротивления (арматура, переходы) обычно не превышают 2-5% от потерь
на трение. Поэтому для технических расчетов за расчетный коэффициент
гидравлического сопротивления принимается величина:

 (1.19)

Для
дальнейшего расчета примем , k=0,5.

Рассчитаем
коэффициент гидравлического сопротивления для всех участков трубопроводной
сети, результаты занесем в таблицу 2.

Таблица
2

Номер индекса i

Наружный диаметр Di , мм

Толщина стенки δi , мм

Коэффициент гидравлического сопротивления,
λтр

1

508

9,52

0,019419

2

377

7

0,020611

3

426

9

0,020135

4

426

9

0,020135

5

377

7

0,020611

6

377

7

0,020611

7

377

7

0,020611

8

630

10

0,018578

9

529

9

0,019248

В расчетах используем среднюю плотность газа по трубопроводной системе,
которую рассчитаем из условий сжимаемости газа при среднем давлении.

Среднее давление по системе при заданных условия составляет:

 (1.20)

Для определения коэффициента сжимаемости по номограмме необходимо
рассчитать приведенную температуру и давление по формулам:

 , (1.21)

 , (1.22)

где T, p — температура и давление при рабочих условиях;

Ткр , ркр — абсолютные критическая температура и давление.

Согласно приложению В: Ткр=190,9 К, ркр =4,649 МПа.

Далее
по номограмме расчета коэффициента сжимаемости природного газа определяемz =
0,88.

Среднюю
плотность газа определим по формуле:

 (1.23)

Для
расчета расхода по газопроводу необходимо определить параметр А:

 (1.24)

Найдем
:

Найдем
расход газа по системе:

 (1.25)

 (1.26)

Динамические параметры теплоносителя

Переходим к следующему этапу расчетов – анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем – это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной “движущей силы” потока вертикально по системе.

В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.

Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.

А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные насосы, нагрев обеспечивается газовым/электрическим котлом.

Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:

  1. По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
  2. По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.

С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки, а может и для гидромассажа или джакузи. Этот вариант попроще.

Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы – 109,08 л.

Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления.

Она высчитывается по следующей формуле:

V = (0,86*W*k)/t-to,

где:

  • W – мощность котла;
  • t – температура подаваемой воды;
  • to – температура воды в обратном контуре;
  • k – кпд котла (0,95 для газового котла).

Подставив в формулу расчетные данные, имеем: (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 л теплоносителя (воды), а ёмкость системы около 110 л.

Расчет расхода на ограниченном участке

Если газопровод состоит из отдельных участков, то расчет суммарного расхода на каждом из них придется выполнять отдельно. Но это несложно, так как для вычислений потребуются уже известные цифры.

Определение данных с помощью программы

Зная изначальные показатели, имея доступ к таблице одновременности и к техническим паспортам плит и котлов, можно приступать к расчету.

Для этого выполняются следующие действия (пример приведен для внутридомового газопровода именно низкого давления):

  1. Количество котлов умножается на производительность каждого из них.
  2. Полученное значение умножается на уточненный с помощью специальной таблицы коэффициент одновременности для этого вида потребителей.
  3. Количество плит, предназначенных для приготовления пищи, умножается на производительность каждой из них.
  4. Полученное после предыдущей операции значение умножается на коэффициент одновременности, взятый из специальной таблицы.
  5. Полученные суммы для котлов и плит суммируются.

Подобные манипуляции проводятся для всех участков газопровода. Полученные данные вводятся в соответствующие графы программы, с помощью которой выполняются исчисления. Все остальное электроника делает сама.

Расчет с использованием формул

Этот вид гидравлического расчета схож с описанным выше, то есть потребуются те же данные, но процедура будет длительной. Так как все придется выполнять вручную, кроме того, проектировщику понадобится осуществить ряд промежуточных операций, чтобы использовать полученные значения для окончательного подсчета.

А также придется уделить достаточно много времени, чтобы разобраться во многих понятиях, вопросах, которые человек не встречает при использовании специальной программы. В справедливости вышеизложенного можно убедиться, ознакомившись с формулами, которые предстоит использовать.

Расчет с помощью формул сложный, поэтому доступный не всем. На картинке изображены формулы для расчета падения давления в сети высокого, среднего и низкого давления и коэффициент гидравлического трения

В применении формул, как и в случае с гидравлическим расчетом с использованием специальной программы, есть особенности для газопроводов низкого, среднего и, конечно же, высокого давления. И об этом стоит помнить, так как ошибка чревата, причем всегда, внушительными финансовыми издержками.

Вычисления с помощью номограмм

Какая-либо специальная номограмма представляет собой таблицу, где указаны ряд значений, изучив которые можно получить нужные показатели, не выполняя вычислений. В случае с гидравлическим расчетом — диаметр трубы и толщину ее стенок.

Номограммы для расчета являются простым способом получения нужных сведений. Достаточно обратиться к строкам, отвечающим заданным характеристикам сети

Существуют отдельные номограммы для полиэтиленовых и стальных изделий. При расчете их использовались стандартные данные, к примеру, шероховатость внутренних стенок. Поэтому за правильность информации можно не переживать.

Правила выполнения расчета

Выше указывалось, что процедуру любого гидравлического расчета регламентирует профильный Свод правил с номером 42-101–2003.

Документ свидетельствует, что основным способом выполнения исчисления является использование для этой цели компьютера со специальными программами, позволяющими рассчитать планируемую потерю давления между участками будущего газопровода или нужный диаметр труб.

Любой гидравлический расчет выполняется после создания расчетной схемы, включающей основные показатели. Более того, в соответствующие графы пользователь вносит известные данные

Если нет таких программ или человек считает, что их использование нецелесообразно, то можно применять другие, разрешенные Сводом правил, методы.

К которым относятся:

  • расчет по приведенным в СП формулам — это самый сложный способ расчета;
  • расчет по, так называемым, номограммам — это более простой вариант, чем использование формул, ведь какие-либо исчисления производить не придется, потому что необходимые данные указаны в специальной таблице и приведены в Своде правил, и их просто нужно подобрать.

Любой из методов расчета приводит к одинаковым результатам. А поэтому вновь построенный газопровод будет способен обеспечить своевременную, бесперебойную подачу планируемого количества топлива даже в часы его максимального использования.

Нормы и правила

Чтобы определить необходимое расстояние от газовой трубы, после разработки проекта жилого строения граждане Российской Федерации обращаются за соответствующим разрешением (согласованием) в местную газораспределительную организацию. Для определенного ответа нужно знать вид газопровода и какое давление применяется при его подаче. Если данные по разновидности прокладки и о давлении в трубах отсутствуют, однозначный ответ дать невозможно.

СНиП 42-01-2002 – один из закономерных результатов действия Федерального Закона РФ «О техническом регулировании» № 184, принятого в декабре 2002 года. В ноябре 2008 года было принято Постановление Правительства РФ № 858, согласно которому разрабатывались и утверждались ныне действующие своды правил. Данный СП был утвержден на законодательном уровне в актуализированной редакции и получил название СП 62.13330.2011.

Самый демократичный по стоимости вид топлива получил широкое распространение и стал общедоступным энергетическим ресурсом. Его повсеместное применение и обусловило насущную необходимость разработки нормативных документов, в котором и можно найти разрешенные дистанции.

Начиная с 2010 года СНиП, зарегистрированные Росстандартом:

  • являются законодательными документами, соблюдение которых носит обязательный характер;
  • проверяется надзирающими организациями, призванными обеспечить безопасность подобных сооружений;
  • могут быть основанием для вынесения решения по судебному иску;
  • признаются весомым поводом наложения административного взыскания по факту нарушения.

СП 62.13330.2011 регламентирует дистанции, которые необходимо соблюдать в зависимости от вида прокладки магистрального газопровода или его ответвлений и давления жидкого топлива в трубах.

Если газ поставляется в баллонах, соблюдать необходимо только предписанные нормы противопожарной безопасности. Более экономичная и объемная транспортировка в трубах предусматривает дифференцированные требования к разным видам поставок и уровня давления при их осуществлении.

Вариант вычислений с помощью ПК

Выполнение исчисления с использованием компьютера является наименее трудоемким — все, что требуется от человека, это вставить в соответствующие графы нужные данные.

Поэтому гидравлический расчет делается за несколько минут, причем для этой операции не потребуется большого запаса знаний, который необходим при использовании формул.

Для его правильного выполнения необходимо взять из технических условий следующие данные:

  • плотность газа;
  • коэффициент кинетической вязкости;
  • температуру газа в своем регионе.

Необходимые техусловия получают в горгазе населенного пункта, в котором будет строиться газопровод. Собственно, с получения этого документа и начинается проектирование любого трубопровода, ведь там содержатся все основные требования к его конструкции.

Использование специальных программ является простейшим способом гидравлического расчета, исключающим поиск и изучение формул для проведения вычислений

Далее застройщику необходимо узнать расход газа для каждого прибора, который планируется подключить к газопроводу. К примеру, если топливо будет транспортироваться в частный дом, то там чаще всего используются плиты для приготовления пищи, всевозможные отопительные котлы, а в их паспортах всегда стоят нужные цифры.

Кроме того, потребуется знать количество конфорок у каждой плиты, которая будет подключена к трубе.

На следующем этапе сбора необходимых данных отбирается информация о падении давления в местах установки какого-либо оборудования — это может быть счетчик, клапан отсекатель, термозапорный клапан, фильтр, прочие элементы.

В этом случае нужные цифры найти просто — они содержатся в специальной таблице, приложенной к паспорту каждого изделия

Проектировщику следует обратить внимание на то, что должно указываться падение давления при максимальном потреблении газа

Из специальной таблицы, приложенной к паспорту изделий, можно узнать сведения о потере давления при подключении приборов к сети

На следующем этапе рекомендуется узнать, каково будет давление голубого топлива в точке врезки. Такие сведения могут содержать технические условия своего горгаза, ранее составленная схема будущего газопровода.

Если сеть будет состоять из нескольких участков, то их необходимо пронумеровать и указать фактическую длину. Кроме того, для каждого следует прописать все изменяемые показатели отдельно — это общий расход любого прибора, который будет использоваться, падение давления, другие значения.

В обязательном порядке понадобится коэффициент одновременности. Он учитывает возможность совместной работы всех потребителей газа, подключенных к сети. Например, всего отопительного оборудования, расположенного в многоквартирном или же частном доме.

Такие данные используются программой, выполняющей гидравлический расчет, для определения максимальной нагрузки на каком-либо участке или во всем газопроводе.

Для каждой отдельной квартиры или дома указанный коэффициент рассчитывать не нужно, так как его значения известны и указаны в приложенной ниже таблице:

Таблица с коэффициентами одновременности, данные из которой используются при любом виде расчетов. Достаточно выбрать графу, соответствующую конкретному бытовому прибору, и взять нужную цифру

Если на каком-то объекте планируется использовать более двух обогревательных котлов, печей, емкостных водонагревателей, то показатель одновременности всегда будет равняться 0,85. Что и нужно будет указать в соответствующей графе, используемой для расчета, программы.

Далее следует указать диаметр труб, а еще понадобятся коэффициенты их шероховатости, которые будут использоваться при строительстве трубопровода. Эти значения стандартные и их легко можно найти в Своде правил.

2 Метод удельных линейных потерь давления

Последовательность
гидравлического расчета методом удельных
линейных потерь давления:

а) вычерчивается
аксонометрическая схемасистемы отопления
(М 1:100).
На
аксонометрической схеме выбирается
главное циркуляционное кольцо. Для
проведения гидравлического расчета
выбираем наиболее нагруженное кольцо,
которое является расчетным (главным),
и второстепенное кольцо (приложение
Ж).При
тупиковом движении теплоносителя
главное циркуляционное кольцо проходит
через наиболее нагруженный и удаленный
от теплового центра (узла) стояк, при
попутном движении – через наиболее
нагруженный средний стояк.

б) главное циркуляционное
кольцо разбивается на расчетные участки,
обозначаемые порядковым номером (начиная
от реперного стояка); указывается расход
теплоносителя на участке G
, кг/ч, длина участка l,
м;

в) для предварительного
выбора диаметра труб определяются
средние удельные потери давления на
трение:

,
Па/м (5.3)

где j
– коэффициент, учитывающий долю потерь
давления на магистралях и стояках, j=0,3
–для магистралей, j=0,7
– для стояков;

Δpр – располагаемое
давление в системе отопления, Па,

Δpр=25 кПа — для
теплоносителяtг=105
С.

г) по величине Rсри
расходу теплоносителя на участке G(приложение Е) находятся
предварительные диаметры труб d,
мм, фактические удельные потери давления
R, Па/м, фактическая
скорость теплоносителя υ,
м/с. Полученные данные заносятся в
таблицу 5.2.

д) определяются потери
давления на участках:

,
Па (5.4)

где R –
удельные потери давления на трение,
Па/м;

l – длина участка, м;

Z
– потери давления на местных сопротивлениях,
Па,

;
(5.5)

ξ – коэффициент,
учитывающий местное сопротивление на
участке, (приложения Б, В);

ρ – плотность
теплоносителя, кг/м3,
(приложение Д);

υ — скоростьтеплоносителя
на участке, м/с, (приложение Е);

е) после предварительного
выбора диаметров труб выполняется
гидравлическая увязка, которая не должна
превышать 15%.

ж) если увязка проходит,
то начинают выполнять расчет второстепенных
циркуляционных колец (аналогично), если
же нет, то на нужных участках устанавливаются
шайбы. Диаметр шайбы подбирают по
формуле:

,
мм, (5.6)

гдеGст
– расход теплоносителя в стояке, кг/ч,
(таблица 3.3);

рш
– требуемые потери давления в шайбе,
Па.

Диафрагмы
устанавливаются у крана на основании
стояка в месте присоединения к подающей
магистрали.

Диафрагмы
диаметром менее 5 мм не устанавливаются.

По
результатам расчетов заполняются
таблицы5.2, 5.3.

1.
Графа 1
– проставляем номера участков;

2.
Графа 2
– в соответствии с аксонометрической
схемой по участкам записываем тепловые
нагрузки, Q,
Вт;

3.
Рассчитываем расход воды в реперном
стояке для расчетного участка (формула
5.1), графа 3:

4.
В соответствии с таблицей 4.2 по диаметру
стояка Dу,
мм выбираем диаметры подводок и
замыкающего участка: Dу(п),
мм; Dу(з),
мм.

5.
Рассчитываем коэффициенты местных
сопротивлений на участке 1 (приложения
Б, В), сумму записываем в графу 10 таблиц
5.2, 5.3.

На
границе двух участков местное сопротивление
относим к участку с меньшим расходом
воды.

Результаты
расчетов сведены в таблицу 5.1.

Таблица
5.1 – Местные сопротивления на расчетных
участках

№ участка,
вид местного сопротивления



Например:Участок
3

2
тройника на проход, =1;

уч(3)=
2х1=2

Например:
Стояк 3

1)
чугунный радиатор – 3 шт., =1,4;

2)
кран регулирующий двойной регулировки
– 6 шт., =13;

3)
отвод гнутый под углом 90
– 6 шт., =0,6;

4)
вентиль обыкновенный прямоточный –
2 шт., =3;

5)
тройник поворотный на ответвление –
2 шт., =1,5.

ст3
= 3х1,4+ + 6х13 + 6х0,6 + 2х3 + 2х1,5 = 96,2

Виды систем отопления

Задачи инженерных расчётов такого рода осложняются высоким разнообразием систем отопления, как с точки зрения масштабности, так и в плане конфигурации. Различают несколько видов отопительных развязок, в каждой из которых действуют свои закономерности:

1. Двухтрубная тупиковая система — наиболее распространённый вариант устройства, неплохо подходящий для организации как центральных, так и индивидуальных контуров обогрева.

2. Однотрубная система или «Ленинградка» считается лучшим способом устройства гражданских отопительных комплексов тепловой мощностью до 30–35 кВт.


Однотрубная система отопления с принудительной циркуляцией: 1 — котёл отопления; 2 — группа безопасности; 3 — радиаторы отопления; 4 — кран Маевского; 5 — расширительный бак; 6 — циркуляционный насос; 7 — слив

3. Двухтрубная система попутного типа — наиболее материалоёмкий вид развязки отопительных контуров, отличающийся при этом наивысшей из известных стабильностью работы и качеством распределения теплоносителя.


Двухтрубная попутная система отопления (петля Тихельмана)

4. Лучевая разводка во многом схожа с двухтрубной попуткой, но при этом все органы управления системой вынесены в одну точку — на коллекторный узел.


Лучевая схема отопления: 1 — котёл; 2 — расширительный бак; 3 — коллектор подачи; 4 — радиаторы отопления; 5 — коллектор обратки; 6 — циркуляционный насос

Прежде чем приступить к прикладной стороне расчётов, нужно сделать пару важных предупреждений. В первую очередь нужно усвоить, что ключ к качественному расчёту лежит в понимании принципов работы жидкостных систем на интуитивном уровне. Без этого рассмотрение каждой отдельно взятой развязки превращается в переплетение сложных математических выкладок. Второе — практическая невозможность изложить в рамках одного обзора больше, чем базовые понятия, за более подробными разъяснениями лучше обратиться к такой литературе по расчёту отопительных систем:

  • Пырков В. В. «Гидравлическое регулирование систем отопления и охлаждения. Теория и практика» 2-е издание, 2010 г.
  • Р. Яушовец «Гидравлика — сердце водяного отопления».
  • Пособие «Гидравлика котельных» от компании De Dietrich.
  • А. Савельев «Отопление дома. Расчёт и монтаж систем».

Магистральные газопроводы. Газопроводы высокого, среднего и низкого давления Глоссарий

Газопровод является важным элементом системы газоснабжения, так как на его сооружение расходуется 70. 80% всех капитальных вложений. При этом от общей протяжённости распределительных газовых сетей 80% приходится на газопроводы низкого давления и 20% – на газопроводы среднего и высокого давлений.

Классификация газопровода по давлению

В системах газоснабжения в зависимости от давления транспортируемого газа различают:

  • газопроводы высокого давления I категории (рабочее давление газа свыше 1,2 МПа);
  • газопроводы высокого давления I категории (рабочее давление газа от 0,6 до 1,2 МПа);
  • газопроводы высокого давления II категории (рабочее давление газа от 0,3 до 0,6 МПа);
  • газопроводы среднего давления (рабочее давление газа от 0,005 до 0,3 МПа);
  • газопроводы низкого давления (рабочее давление газа до 0,005 МПа).

Газопроводы среднего давления через газорегуляторные пункты (ГРП) снабжают газом газопроводы низкого давления, а также промышленные и коммунально-бытовые предприятия. По газопроводам высокого давления газ поступает через ГРП на промышленные предприятия и газопроводы среднего давления. Связь между потребителями и газопроводами различных давлений осуществляется через ГРП, ГРШ и ГРУ.

Расположение газопроводов (классификация)

В зависимости от расположения газопроводы делятся на наружные (уличные, внутриквартальные, дворовые, межцеховые) и внутренние (расположенные внутри зданий и помещений), а также на подземные (подводные) и надземные (надводные). В зависимости от назначения в системе газоснабжения газопроводы подразделяются на распределительные, газопроводы-вводы, вводные, продувочные, сбросные и межпоселковые.

Распределительными являются наружные газопроводы, обеспечивающие подачу газа от магистральных газопроводов до газопроводов-вводов, а также газопроводы высокого и среднего давлений, предназначенные для подачи газа к одному объекту.

Газопроводом-вводом считают участок от места присоединения к распределительному газопроводу до отключающего устройства на вводе.

Вводным газопроводом считают участок от отключающего устройства на вводе в здание до внутреннего газопровода.

Межпоселковыми являются распределительные газопроводы, расположенные вне территории населенных пунктов.

Внутренним газопроводом считают участок от газопровода-ввода (вводного газопровода) до места подключения газового прибора или теплового агрегата.

Материалы для газопроводов

В зависимости от материала труб газопроводы подразделяют на металлические (стальные, медные) и неметаллические (полиэтиленовые).

Различают также трубопроводы с природным, со сжиженным углеводородным газом (СУГ), а также сжиженным природным газом (СПГ) при криогенных температурах.

Принцип построения распределительных систем газопроводов

По принципу построения распределительные системы газопроводов делятся на кольцевые, тупиковые и смешанные. В тупиковых газовых сетях газ поступает потребителю в одном направлении, т.е. потребители имеют одностороннее питание.

В отличие от тупиковых, кольцевые сети состоят из замкнутых контуров, в результате чего газ может поступать к потребителям по двум или нескольким линиям.

Надежность кольцевых сетей выше тупиковых. При проведении ремонтных работ на кольцевых сетях отключается только часть потребителей, присоединенных к данному участку.

Разумеется, если вам надо заказать проведение газа в на участок или выполнить газификацию многоквартирного дома, вместо заучивания терминов выгоднее и эффективнее обратиться к надежным сертифицированным подрядчикам. Мы выполним работы по проведению газа на ваш объект качественно и в оговоренные сроки.

ООО «ГазКомфорт»

Офис в Минске: г.Минск, пр. Победителей 23, корп. 1, офис 316АОфис в Дзержинском: г.Дзержинск, ул. Фурманова 2, оф.9

Выводы и полезное видео по теме

Этот ролик дает возможность понять, с чего начинается гидравлический расчет, откуда проектировщики берут нужные данные:

В следующем ролике приведен пример одного из видов компьютерного расчета:

Далее можно ознакомиться с примером расчета с использованием компьютерной программы:

Чтобы выполнить гидравлический расчет с помощью компьютера, как это позволяет профильный Свод правил, достаточно потратить немного времени на ознакомление с программой и сбор нужных данных.

Но практического значения все это не имеет, так как составление проекта — процедура гораздо более объемная и включает в себя множество других вопросов. Ввиду этого большинству граждан придется обращаться за помощью к специалистам.

Появились вопросы, нашли недочеты или можете дополнить наш материал ценной информацией? Оставляйте свои комментарии, задавайте вопросы, делитесь опытом в расположенном ниже блоке.

Источник

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector