Индикаторные led
Чтобы выбрать подходящий индикаторный ЛЕД-элемент, нужно ознакомиться с их видами и типами. В эту группу входят такие разновидности диодов: DIP, Super Flux «Piranha», Straw Hat, SMD. Все они отличаются конструкцией, размерами, яркостью излучения и т. д. Их применяют в разных сферах.
DIP светодиоды
Это разновидность светоизлучающих устройств, которые имеют выводной корпус и часто выпуклую линзу. Разные виды светодиодов из это группы отличаются формой и диаметром корпуса. Цилиндрические элементы имеют окружность колбы от 3 мм. Также в продаже есть диоды с прямоугольным корпусом.
Они имеют широкий спектральный диапазон, бывают одноцветными и многоцветными (RGB ленты). Однако их угол свечения не превышает 60°.
Их используют для уличной рекламы, индикаторов.
Super Flux Piranha
Этот вид светодиодов отличается самым высоким показателем по световому потоку. Он имеет прямоугольный корпус с 4 пинами (выводы), поэтому его можно жестко присоединить к плате.
В продаже есть светодиоды с красным, зеленым, синим и белым светом, последние отличаются цветовой температурой. Вы можете приобрести ЛЕД-элементы с линзой (3, 5 мм) или без нее. Угол, в пределах которого расходиться световой поток достаточно широкий – от 40° до 120°.
Пиранью монтируют в приборы автомобиля, дневные ходовые огни, магазинные вывески и т. д.
Straw Hat
Эти диоды еще называют «соломенная шляпа», это связано с их конструкцией. Они выглядят, как обычные led-лампочки с колбой в форме цилиндра и двумя выводами, но их высота меньше, а радиус линзы больше.
Светодиод размещен близко к передней стенке колбы, поэтому угол свечения достигает 100 – 140°. ЛЕД-устройства представлены в красном, синем, зеленом, желтом и белом цвете. Они излучают направленный световой поток, поэтому их применяют в качестве интерьерной подсветки или заменяют ими лампы аварийной сигнализации.
SMD светодиоды
Кроме выводных индикаторных светодиодов в продаже имеются устройства типа SMD. В эту группу входят цветные диоды с очень ярким светом, а также белые элементы с низкой мощностью (до 0.1 Вт) для поверхностной установки.
Размеры лампочек отличаются, например, изделие SMD 0603 – это сверхмалый светодиод, который используют для декоративной подсветки, монтируют в автомобильные лампы, приборные панели и т. д. Кроме того, выпускаются устройства 0805, 1210 и т. д. Лампочка может быть с линзой или без нее.
Чаще всего светодиоды типа SMD применяют для создания ЛЕД-лент. Это обусловлено тем, что их легко монтировать на основание.
Электрические схемы подключения светодиодов
В этой части статьи рассмотрены способы подключения полупроводниковых источников света к сетям питания. Применение следующих правил и рекомендаций предотвратит повреждение и продлит срок службы светодиодов.
Подключение к сети 220 В
Вместо драйвера можно применить такой вариант подключения
Резистор R1 ограничивает силу тока. Конденсатор C1 – гасит колебания. Для расчета характеристик резистора используйте рассмотренный выше алгоритм.
Подключение светодиодов к сети питания 12 В
Эта схема подойдет для подключения светодиодов общей мощностью до 1 Вт
Она обеспечивает ток потребления до 245 мА, напряжение от 12 до 24 В. Исходя из приведенных параметров выбирают подходящие светодиоды.
Видео с пояснениями монтажа мощных светодиодов:
Watch this video on YouTube
Предыдущая ОсвещениеСхема подключения проходного выключателя с 2х мест: порядок выполнения монтажных работ
Следующая ОсвещениеКак сэкономить на качестве: розетки и выключатели, лучшие бренды производителей
Как определить напряжение светодиода
Самый очевидный метод определения напряжения полупроводникового прибора – это использовать регулируемый источник питания. Если блок питания регулируется с нуля и при этом возможен контроль тока (а еще лучше – его ограничение), то больше ничего не нужно.
Надо подключить LED к источнику, строго соблюдая полярность. Дальше надо плавно поднимать напряжение (до 3..3,5 В). При определенном напряжении светодиод вспыхнет в полную силу. Этот уровень будет примерно соответствовать рабочему току, который можно считать по амперметру. Если у прибора нет встроенного амперметра, то крайне желательно контролировать ток по внешнему прибору.
Проверка светодиода с помощью регулируемого источника питания.
Такой метод применим к приборам оптического диапазона. Свечение УФ- и ИК-светодиодов не видно человеческим зрением, но в последнем случае можно наблюдать за включением LED через камеру смартфона. Таким методом можно отследить появление инфракрасного излучения.
Свечение ИК-светодиода не видно невооруженным глазом, но наблюдается через камеру смартфона.
Если регулируемого источника нет, можно взять обычный блок питания с фиксированным выходом, заведомо превышающим предполагаемое напряжение светодиода. Или даже батарейку на 9 В, но в этом случае можно будет проверить только светодиод небольшой мощности. К светоизлучающему элементу надо последовательно припаять резистор так, чтобы ток в цепи не превысил верхний предел. Если предполагается, что LED маломощный и работает при токе не более 20 мА, то для источника с выходным напряжением 12 В резистор должен быть около 500 Ом. Если используется мощный осветительный прибор (например, типоразмера 5730) с током 150 мА (батарейка такой ток обеспечит не всегда), то резистор должен быть около 10 Ом. Надо подключить цепочку к источнику постоянного напряжения, убедиться в зажигании LED и замерить падение напряжения на нем.
Светодиод с припаянным резистором.
Существуют и альтернативные способы узнать, на сколько вольт рассчитан светодиод.
Мультиметром
Правильная полярность подключения LED к тестеру.
У некоторых мультиметров напряжение, подаваемое на клеммы в режиме тестирования диодов, достаточно велико для зажигания LED. Такой измерительный прибор можно использовать для определения рабочего напряжения светодиода, одновременно проверяя цоколевку полупроводникового элемента. При верном подключении p-n переход начнет светиться, а тестер покажет какое-то сопротивление (зависит от типа LED). Проблема этого метода в том, что для замера фактического значения Uрабочего на выводах светодиода потребуется второй мультиметр. И другой момент: измерительного напряжения мультиметра вряд ли будет достаточно для вывода светодиода в рабочую точку по току. Визуально это заметно по недостаточно яркому свечению, а для замеров это будет означать, что светодиод не вышел на линейную часть ВАХ и фактическое значение рабочего напряжения будет выше.
По внешнему виду
Сигнальные светодиоды различного цвета свечения.
Рабочее напряжение приблизительно можно оценить по внешнему виду и цвету свечения LED (иногда цвет можно определить даже не подавая питание на прибор). Для этого можно воспользоваться таблицей, приведенной выше. Но однозначно определить напряжение по цвету свечения светодиода не получится. Зачастую производители подкрашивают компаунд, чтобы цвет излучения p-n перехода сложился с цветом линзы и получился новый оттенок. К тому же даже в пределах одного цвета существует разброс параметров (см. таблицу) для светодиодов разных типов. Так, для LED белого свечения разница напряжений может достигать более 50%.
Угол излучения
Лампочки накаливания излучают свет во все стороны, так как имеют прозрачную колбу. В большинстве случаев это никому не мешает. Но если необходимо создать направленное освещение, такое излучение будет характеризоваться большими потерями. Светодиоды излучают свет пучком. Это означает, что подобных потерь не будет, так как свет направлен на определенные объекты.
Градус излучения в зависимости от вида лампочки.
Чтобы изделие могло осветить больше пространства, под колбой чипы устанавливают под разными углами. Если это ночник или точечная подсветка, не понадобится большой угол рассеивания. Для комнаты в квартире или доме приемлемым считается угол 180°. Если необходимо заполнить светом большое пространство, следует выбирать лампу с углом 270°.
Осветительные led
Это высокомощные кристаллы, которые излучают яркий свет. Они применяются для установки на поверхность приборов и выпускаются в белом цвете. Температура свечения разных видов светодиодов отличается: от холодного до теплого белого.
Осветительные SMD led
Многие виды светодиодов имеют корпус типа SMD. Такие устройства обладают большей мощностью, чем индикаторные. Они состоят из кристалла, покрытого люминофором, который размещен на теплоотводящем основании. Есть изделия с колбой или без нее.
Осветительные SMD часто монтируют в лампы, ленты, ручные фонари, фары автомобилей и т. д. Угол их рассеяния света – от 100 до 130°, поэтому для равномерного освещения большой площади применяют большое количество элементов.
COB светодиоды
Очень популярны led-устройства типа COB. Они представляют собой плату с 9 и более элементами, которые залиты люминофором. Световой поток этих видов светодиодов намного выше, чем у SMD. Их угол свечения большой, поэтому их не применяют для создания направленного освещения. Однако диоды типа COB не получиться использовать для общей подсветки, так как угол рассеяния меньше 180°.
Светодиоды типа COB наименее ремонтопригодны, если перегорит один элемент, то придется заменить матрицу.
Filament led
Эта разновидность светодиодов широко применяется для декоративного освещения. Свет этих лампочек намного приятнее для восприятия, чем излучение от устройств типа SMD или COB. Кроме того, Filament имеют более высокий коэффициент полезного действия. Это связано с их конструкцией: диоды устанавливают на цилиндрическое стеклянное основание, а потом покрывают люминофором. Угол их свечения достигает 360°, что позволяет создать направленный свет.
Светодиоды фирмы CREE
Эта фирма специализируется на изготовлении сверхкачественных и ярких диодов. Она одна из первых начала разрабатывать новые белые лампочки, тем самым установив новую веху в индустрии.
Светодиоды CREE, характеристики которых представлены, остаются конкурентоспособными в своей отрасли:
— имеют рекордные значения светового потока, достигающие 345 люменов при токе 1000 мА;- тепловое сопротивление на низком уровне;- относительно расширенный угол изучения;- миниатюрный, равномерно распределенный кристалл;- максимальный прием тока до 1500 мА;- улучшенную линзу из силикона вместо используемого стекла;- максимальную температуру работы кристалла 150 °С.
Как видно, такие технологии только вступают в силу и приносят исключительные выгоды от их использования. Каждый день делаются новые открытия, светодиодные лампы становится более экономичными и яркими, благодаря чему начинают по праву занимать лидирующее место на световой арене.
Влияние светодиодных ламп на здоровье человека
В условиях повышения тарифов на электроэнергию, большинство владельцев частных домов и квартир заменили лампы накаливания на светодиодные. Данная проблема вызвала массу споров на тему «вредны ли светодиодные лампы для здоровья человека»? Не секрет, что такую продукцию используют во многих государственных и общественных заведениях, устанавливают на лестничных площадках. Чтобы разобраться в вопросе безопасности, нужно углубиться в строение и механику действия ламп.
Влияние светодиодных ламп на здоровье человека
Диодные светильники считаются наиболее экономичными источниками света. Их устанавливают в квартирах, общественных заведениях и даже государственных. Из основных преимуществ пользования можно выделить такие пункты:
— Лампа зажигается мгновенно;
— Не обладает хрупкими элементами;
— Не нагревается и не может взорваться;
— Низкое потребление электроэнергии
Самое важное – отсутствие ядовитых компонентов, которые могут проявляться при накаливании. Они не представляют опасности для природы, так как не содержат внутри себя ртуть или другие тяжелые вещества. Вредны ли светодиодные лампы при свечении – отдельный вопрос
Вредны ли светодиодные лампы при свечении – отдельный вопрос.
Особенности конструкции
Конструкционно, состоят из трех основных компонентов: цоколь, драйвер и рассеиватель. В зависимости от потребляемой энергии и цветовой температуры, характеристики различаются. Например, для работы или офисных помещений не советуется брать лампы, издающие желтый оттенок. Для подобных целей оптимальным вариантом является нейтрально белый.
Желтый оттенок и голубой пагубно влияют на зрение. Таким цветом чаще всего обладают некачественные модели или обладающие низким световым потоком. Они вредны для зрения, ведь за несколько часов работы глаза могут сильно устать. Светильники подобного плана используют только в спальнях, залах и коридорах для местного освещения.
Второй показатель, способный влиять на здоровье – мерцание. Каждый электрический прибор, основанный на светодиодах, обладает мерцанием. Этот показатель может привести к некоторым нервным расстройствам и ухудшению зрения. Поэтому современные модели выпускаются уже на базе драйвера (устройства, стабилизирующего напряжение в сети). Но в сравнении с люминесцентными лампочками, диодные еще не опасны.
Проблема мерцания касается только некачественных моделей, а также возможна при перепадах напряжения в сети. Заметить пульсация невооруженным глазом сложно. Вред от светодиодных ламп возможен только в этом случае.
Медицинские исследования и как выбрать нужную модель?
Вреди и польза светодиодных ламп были изучены медициной. Пагубно влияют светильники голубого оттенка, заставляющие глаз постоянно напрягаться. При этом, по санитарным нормам использовать диодные лампочки в учебных заведениях воспрещено.
Рядовой пользователь также может обезопасить себя, если приобретет качественные светодиодные лампы. Их производством занимаются популярные фирмы
Важное правило: знакомиться с инструкцией, обращать внимание на световой поток (4000-5000К оптимальный показатель)
Не стоит гнаться за дешевизной, приобретая лампочки от малоизвестных производителей. Большинство из них обладают низким сроком эксплуатации, поэтому сэкономить на их приобретении не получится. Покупая источники света, следует опробовать одну модель, а уже после делать вывод относительно её производительности. В основном, современные и эффективные модели обладают собственным драйверов, но при его отсутствии – можно приобрести дополнительный блок питания.
Заключение
Светодиодные лампочки могут нанести вред в том случае, если относятся к некачественным моделям. Иногда, проблема может заключаться в плохом соединении из-за термопасты. Обладая необходимым инструментом и небольшими познаниями в конструкции LED-светильников, можно заменить пасту.
Приобретать устройства лучше всего в интернет или специализированных магазинах. Консультация при покупке не помешает, особенно зная основные требования к источникам света. Поделитесь данной информацией со знакомыми в своей социальной сети, если считаете ее полезной.
Теория
Цель работы
Ознакомиться с основными фотометрическими
величинами; ознакомиться с принципом работы
фотометра; проверить
выполнение закона Ламберта для источника света
Полупроводниковые диоды и стабилитроны
Выпрямительные диоды и стабилитроны представляют
собой полупроводниковые
приборы с одним электронно-дырочным переходом
(p–n-переходом).
Одним из свойств p–n-перехода является способность
изменять свое сопротивление в зависимости от
полярности
напряжения внешнего источника. Причем разница
сопротивлений при прямом и обратном направлениях тока
через
p–n-переход может быть
настолько велика, что в ряде случаев, например для
силовых диодов, можно считать, что
ток протекает через диод только в одном направлении –
прямом, а в обратном направлении ток настолько мал,
что им
можно пренебречь. Прямое направление – это когда
электрическое поле внешнего источника направлено
навстречу
электрическому полю p–n-
перехода, а обратное – когда направления этих
электрических полей совпадают.
Полупроводниковые диоды, использующие вентильное
свойство p–n-перехода, называются выпрямительными
диодами и
широко используются в различных устройствах для
выпрямления переменного тока.
Вольт-амперная характеристика (ВАХ) идеализированного
p–n-перехода описывается известным уравнением
где \(I_0\) – обратный ток p–n-перехода; \(q\) –
заряд электрона \(q=1,6\cdot 10^{-19}\ Кл\); \(k\) –
постоянная
Больцмана \(k = 1,38⋅10^{-23} Дж\cdot град\); \(T\) –
температура в градусах Кельвина.
Графическое изображение этой зависимости
представлено на рис. 1.1.
Вольт-амперная характеристика имеет явно выраженную
нелинейность, что предопределяет зависимость
сопротивления
диода от положения рабочей точки.
Различают сопротивление статическое \(R_{ст}\) и
динамическое \(R_{дин}\). Статическое сопротивление
\(R_{ст}\),
например в точке А (рис. 1.1), определяется как
отношение напряжения \(U_A\) и тока \(I_A\),
соответствующих этой точке: \(R_{ст} =
\frac{U_A}{I_A} = tg{\alpha}\)
Динамическое сопротивление определяется как отношение
приращений напряжения и тока (рис. 1.1):
\(R_{дин} = \frac{\Delta U}{\Delta I}\);
Рис. 1.1
При малых значениях отклонений \(∆U\) и \(ΔI\)
можно пренебречь нелинейностью
участка АВ характеристики и считать его гипотенузой
прямоугольного треугольника
АВС, тогда \(R_{дин} = tgβ\).
Если продолжить линейный участок прямой ветви
вольт-амперной характеристики
до пересечения с осью абсцисс, то получим точку
\(U_0\) – напряжение отсечки, которое
отделяет начальный пологий участок характеристики,
где динамическое сопротивление
\(R_{дин}\) сравнительно велико от круто
изменяющегося участка, где \(R_{дин}\) мало.
При протекании через диод прямого тока
полупроводниковая структура нагревается,
и если температура превысит при этом предельно
допустимое значение, то произойдет
разрушение кристаллической решетки полупроводника и
диод выйдет из строя. Поэтому
величина прямого тока диода ограничивается предельно
допустимым значением
\(I_{пр.max}\) при заданных условиях охлаждения.
Если увеличивать напряжение, приложенное в обратном
направлении к диоду, то
сначала обратный ток будет изменяться незначительно,
а затем при определенной величине
\(U_{проб}\) начнется его быстрое увеличение (рис.
1.2), что говорит о наступлении пробоя p–n-перехода.
Существуют несколько видов пробоя p–n-перехода в
зависимости от
концентрации примесей в полупроводнике, от ширины
p–n-перехода и температуры:
- обратимый (электрический пробой);
- необратимые (тепловой и поверхностный пробои).
Необратимый пробой для полупроводникового прибора
является нерабочим и недопустимым режимом.
Рис. 1.2
Поэтому в паспортных данных диода всегда
указывается предельно допустимое
обратное напряжение \(U_{проб}\) (напряжение
лавинообразования), соответствующее началу
пробоя p–n-перехода. Обратное номинальное значение
напряжения составляет обычно
\(0,5\ U_{проб}\) и определяет класс прибора по
напряжению. Так, класс 1 соответствует 100 В
обратного напряжения, класс 2 – 200 В и т. д.
В некоторых случаях этот режим пробоя используют
для получения круто нарастающего
участка ВАХ, когда малому приращению напряжения
\(∆U\) соответствует большое изменение тока
\(ΔI\) (рис. 1.2). Диоды, работающие в таком режиме,
называются
стабилитронами, т. к. в рабочем диапазоне при
изменении обратного тока от \(i_{обр. min}\) до
\(i_{обр. max}\) напряжение на диоде остается почти
неизменным, стабильным. Поэтому для
стабилитронов рабочим является участок пробоя на
обратной ветви ВАХ, а напряжение
пробоя (напряжение стабилизации) является одним из
основных параметров.
Расчет резистора для светодиода
Надежная работа светодиода зависит от тока, протекающего через него. При заниженных значениях, он просто не будет светить, а при превышении значения тока – характеристики элемента ухудшатся, вплоть до его разрушения. При этом говорят – светодиод сгорел. Для того чтобы исключить возможность выхода из строя этого полупроводника необходимо подобрать в цепь с включенным в нее, резистором. Он будет ограничивать ток в цепи на оптимальных значениях.
Вычисление номинала сопротивления
Для работы радиоэлемента на него нужно подать питание. По закону Ома, чем больше сопротивление отрезка цепи, тем меньший ток по нему протекает. Опасная ситуация возникает, если в схеме течет больший ток, чем положено, так как каждый элемент не выдерживает большей токовой нагрузки.
Сопротивление светодиода является нелинейным. Это значит, что при изменении напряжения, подаваемого на этот элемент, ток, протекающий через него, будет меняться нелинейно. Убедиться в этом можно, если найти вольт — амперную характеристику любого диода, в том числе и светоизлучающего. При подаче питания ниже напряжения открытия p — n перехода, ток через светодиод низкий, и элемент не работает. Как только этот порог превышен, ток через элемент стремительно возрастает, и он начинает светиться.
Если источник питания соединять непосредственно со светодиодом, диод выйдет из строя, так как не рассчитан на такую нагрузку
Чтобы этого не произошло – нужно ограничить ток, протекающий через светодиод балластным сопротивлением, или произвести понижение напряжения на важном для нас полупроводнике
Рассмотрим простейшую схему подключения (рисунок 1). Источник питания постоянного тока подключается последовательно через резистор к нужному светодиоду, характеристики которого нужно обязательно узнать. Сделать это можно в интернете, скачав описание (информационный лист) на конкретную модель, или найдя нужную модель в справочниках. Если найти описание не представляется возможным, можно приблизительно определить падение напряжения на светодиоде по его цвету:
- Инфракрасный — до 1.9 В.
- Красный – от 1.6 до 2.03 В.
- Оранжевый – от 2.03 до 2.1 В.
- Желтый – от 2.1 до 2.2 В.
- Зеленый – от 2.2 до 3.5 В.
- Синий – от 2.5 до 3.7 В.
- Фиолетовый – 2.8 до 4 В.
- Ультрафиолетовый – от 3.1 до 4.4 В.
- Белый – от 3 до 3.7 В.
Рисунок 1 – схема подключения светодиода
Ток в схеме можно сравнить с движением жидкости по трубе. Если есть только один путь протекания, то сила тока (скорость течения) во всей цепи будет одинакова. Именно так происходит в схеме на рисунке 1. Согласно закону Кирхгоффа, сумма падений напряжения на всех элементах, включенных в цепь протекания одного тока, равно ЭДС этой цепи (на рисунке 1 обозначено буквой Е). Отсюда можно сделать вывод, что напряжение, падающее на токоограничивающем резисторе должно быть равным разности напряжения питания и падения его на светодиоде.
Так как ток в цепи должен быть одинаковым, то и через резистор, и через светодиод ток получается одним и тем же. Для стабильной работы полупроводникового элемента, увеличения его показателей надежности и долговечности, ток через него должен быть определенных значений, указанных в его описании. Если описание найти невозможно, можно принять приблизительное значение тока в цепи 10 миллиампер. После определения этих данных уже можно вычислить номинал сопротивления резистора для светодиода. Он определяется по закону Ома. Сопротивление резистора равно отношению падения напряжения на нем к току в цепи. Или в символьной форме:
R = U (R)/ I,
где, U (R) — падение напряжения на резисторе
I – ток в цепи
Расчет U (R) на резисторе:
U (R) = E – U (Led )
где, U (Led) — падение напряжения на светодиодном элементе.
С помощью этих формул получится точное значение сопротивления резистора. Однако, промышленностью выпускаются только стандартные значения сопротивлений так называемые ряды номиналов. Поэтому после расчета придется сделать подбор существующего номинала сопротивления. Подобрать нужно чуть больший резистор, чем получилось в расчете, таким образом, получится защита от случайного превышения напряжения в сети. Если подобрать близкий по значению элемент сложно, можно попробовать соединить два резистора последовательно, или параллельно.
Подбор мощности резистора
Если подобрать сопротивление меньшей мощности, чем нужно в схеме, оно просто выйдет из строя. Расчет мощности резистора довольно прост, нужно падение напряжения на нём умножить на ток, протекающий в этой цепи. После чего нужно выбрать сопротивление с мощностью, не меньшей рассчитанной.
Какие бывают светодиоды
Рассмотрим классификацию приборов LED в зависимости от их назначения, и технических характеристик.
Свойства и параметры индикаторных моделей
Индикаторные светодиоды могут иметь диаметр: 3, 5, 10 или 8 мм. Их напряжение варьируется от 2,5 до 5 Вольт. При этом они потребляют электрического тока от 10 до 25 миллиампер. Средняя яркость такого диода – всего от 100 до 1000 милликанделл. Данные приборы обладают круглыми или прямоугольными линзами.
Осветительные диоды
Активнее всего диоды применяются в освещении. Осветительные диоды изготавливаются, путем покрытия синего светодиода слоем люминофора. Светодиоды COB представляют собой подложку с расположенными на ней полупроводниками. Кристаллы при этом залиты люминофором нужных цветов. Плотность размещенных кристаллов обеспечивает повышенную яркость излучаемого света.
Обычно осветительным диодам требуется питание от 3 до 35 вольт. Они пропускают ток от 100 мА и до 2,5 А, а то и больше.
Какую светодиодную ленту выбрать
Светодиодные ленты выбирают по особенностям оформления и техническим характеристикам
Если с эстетической стороной вопроса каждый справляется по своему усмотрению, то на конструкцию и функциональные возможности следует обратить особое внимание. Перечислим основные из них
Место монтажа и степень защиты от влаги и пыли
При изготовлении светодиодных лент производитель предусматривает ту или иную степень защиты от неблагоприятных внешних факторов. По международной классификации для электрических приборов она обозначается буквами IP и парой цифр после них. Первая указывает защищенность от попадания внутрь твердых частиц, вторая – влаги. Чем они выше, тем в более сложных условиях возможна эксплуатация изделия.
Для светодиодной продукции пыль не представляет серьезной опасности, поэтому на первую цифру при покупке можно не обращать внимания. Зато вторая имеет решающее значение при выборе места установки. В сухих закрытых помещениях, где нет источников влаги, применяются самые простые ленты класса IP20. Для ванной комнаты, кухни или открытой площадки следует приобретать изделия с маркировкой IP66 или IP67. В местах, где возможно скопление воды, потребуется уровень защиты не менее IP68. Такие приборы стоят дороже, поскольку требуют более надежной конструкции и специальных материалов.
Одноцветная белая или цветная лента
Светодиодные технологии позволяют получать свечение самых разных оттенков. По этому критерию различают ленты двух основных групп.
Одноцветные белые ленты
Одноцветные ленты конструктивно проще, поэтому имеют самую низкую цену. Их обычно выбирают для целей бытового или рабочего освещения. Они могут быть абсолютно белыми или давать ровный свет выбранной вами окраски и температуры.
Многоцветные RGB ленты
Многоцветные или RGB-ленты имеют в своем составе элементы трех цветов, от соотношения интенсивности свечения которых зависит общая окраска. Для управления ими устанавливается контроллер, регулирующий подачу тока в зависимости от выбранной пользователем программы. Такие осветительные приборы могут давать стабильный свет необходимой длины волны, мерцать или переливаться, создавая необычный эстетический эффект.
Их обычно применяют в декоративных целях. Они подойдут для оформления зон отдыха, кафе, ресторанов, торговых помещений, вывесок наружной и внутренней рекламы.
Цветовая температура светодиода
Светодиоды белого цвета различаются между собой оттенками. Их классифицируют по цветовой температуре, измеряемой в кельвинах и обозначаемой буквой К.
Наиболее характерные диапазоны:
- теплый свет 2700-3500К имеет слабый желтый оттенок, который подходит для спальни, кухни или гостиной;
- нейтральный вариант 4000-4500К абсолютно не имеет окраски, поэтому считается универсальным;
- холодное свечение выше 5000К по мере увеличения цветовой температуры дает слабый голубой, синий или фиолетовый оттенок, который часто используют в офисах или производственных помещениях.
Осветительные приборы с максимальными значениями цветовой температуры могут неблагоприятно влиять на глаза из-за близости к ультрафиолетовой области спектра.
Световой поток или яркость свечения
Яркость осветительного прибора характеризуется световым потоком, измеряемым в люменах (обозначается lm или лм). Для светодиодных светильников он обычно составляет 80-110 лм на ватт потребляемой мощности, что в несколько раз превосходит традиционные лампы накаливания.
Световой поток LED-лент определяется тремя основными факторами:
- Качеством используемых светодиодов.
- Их количеством на погонный метр (обычно от 30 до 240).
- Типоразмером и мощностью установленных светодиодов, маркируемых четырьмя цифрами. Самые распространенные модели 3528, 2835, 5050.
Выбираем напряжение питания
Наиболее распространенными на современном рынке являются светодиодные ленты с рабочим напряжением 220, 24 и 12 вольт. Первые из них включаются в сеть через выпрямитель тока
Их эксплуатация не гарантирует полной электрической безопасности, поэтому выбирать их следует с особой осторожностью
Для бытовых условий лучше подойдут осветительные приборы на 12V. Они оснащаются собственным блоком питания и не могут причинить вред здоровью даже при случайном контакте с токоведущими частями.
Светодиодная лента с блоком питания.
Тип цоколя и наличие радиатора
Сила и напряжение, потребляемого светодиодом тока
Почти все светоизлучающие диоды рассчитаны на стандартную силу тока 20 мА. При вычислении сопротивления светодиода по закону Ома используется именно эта величина.
Светодиод, как собственно и любой диод, способен пропускать ток только в одну сторону, для стабильной работы он должен быть постоянным. Источником питания для LED источников света является дроссель, который выдает необходимые характеристики потребляемого тока. Светодиодный кристалл рассчитан на напряжение, колеблющееся от 0,5 до 6 вольт.
Следует заметить, что в электрофизических значениях светодиодов существует допустимый разброс вольт амперной характеристики (ВАХ), это обусловлено технологией производства. Невозможно вырастить кристаллы с жестко ограниченными показателями. Подгон показателей производится методом калибровки.
Монтаж следует проводить в соответствии с обозначенной полярностью. При неправильном включении светодиод закроется, и работать не будет. Если напряжение превысит предел в 5 вольт, произойдет пробой, что приведет к порче изделия.
Для правильного подключения катод на DIP светодиодах обозначается более короткой ногой, на SMD это будет спил на подложке возле соответствующего контакта.