Принцип работы и подключение индуктивных датчиков

Конкретный производители

Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.

«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» — рис. 4.

Рис. 4 — Пример применения индуктивного датчика «TEKO»

В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.

AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.

На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.

Рис. 5 — Пример модернизации спаивающей головки упаковочной линии

В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.

OMRON. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.

На рис. 6 — датчики показывают положение механизма редуктора.

Рис. 6 — Датчик показывает положение механического редуктора.

В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.

ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать (рис. 7).

Рис. 7 — Дитчик Allen Bradley

Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!

Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.

Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам.

Индукционные датчики следующего поколения

Благодаря новым разработкам в этой области, были созданы усовершенствованные модели индукционных датчиков следующего поколения. Принцип работы остался прежним, однако подверглась тщательной переработке конструкция устройства. В результате датчики теперь оснащаются тонкими платами, распечатанными на 3D-принтерах, и современной цифровой электроникой. Кроме того, их производят на гибких подложках, что избавляет от необходимости использования традиционных кабелей и разъемов. Так что пользоваться устройствами можно даже в тяжелых погодных условиях.

К преимуществам новых разработок можно отнести следующее:

  • снижение стоимости и веса, более компактные размеры;
  • возможность выбора практически любых форм-факторов;
  • повышение точности реагирования на металлические объекты;
  • возможность проведения замеров, связанных со сложной геометрией, в двух или трех измерениях;
  • упрощение конструкции;
  • возможность устанавливать несколько индукционных датчиков близко друг к другу из-за высокой электромагнитной совместимости.

Источник

Замена датчиков

Как я уже писал, есть принципиально 4 вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

(adsbygoogle = window.adsbygoogle || []).push({});

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации — механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы — изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN замена. Слева — исходная схема, справа — переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле (примеры — ниже, в обозначениях).

Итак, схема слева. Предположим, что тип датчика — НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к какому-либо входу. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор «висит в воздухе», то это называют «схема с открытым коллектором». Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать «прям щас».

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 — 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен — на входе контроллера дискретный «0″, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

Да, не совсем то, что мы хотели. В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов — тахометр, или количество заготовок.

Как добиться полного функционала? Способ 1 — механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 — перепрограммировать вход контроллера чтобы дискретный «0″ был активным состоянием контроллера, а «1″ — пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Погрешности датчиков

Бесконтактный индуктивный датчик

Погрешность снятия показаний контрольной системой существенно влияет на работу бесконтактного индуктивного датчика. Ее общая величина набирается из отдельных ошибок измерений по различным показателям: электромагнитным, температурным, аппаратным, магнитной упругости и многим другим.

Электромагнитная погрешность определяется как случайно проявляющаяся величина. Она появляется из-за паразитной ЭДС, наведенной в катушке внешними магнитными полями. В производственных условиях этот компонент создается силовым оборудованием с рабочей частотой 50 Герц. Температурная погрешность – один из важнейших показателей, поскольку работать большинство датчиков могут лишь в определенном диапазоне температур. Она обязательно учитывается при проектировании устройств этого класса.

Погрешность магнитной упругости вводится как показатель нестабильности деформаций сердечника, возникающей в процессе сборки прибора, а также как тот же фактор, но проявляющийся при его работе. Нестабильности внутренних напряжений в магнитопроводе приводит к ошибкам в обработке выходного сигнала. Погрешность, возникающая в самом чувствительном устройстве, проявляется из-за влияния полевой структуры на коэффициент деформации металлических элементов датчика. Кроме того, на ее суммарное значение существенно влияют люфты и зазоры в подвижных частях конструкции.

Погрешность соединительного кабеля набирается из отклонений величины сопротивления его проводных жил в зависимости от температурного фактора, а также как наводки посторонних электромагнитных полей и ЭДС. Тензометрическая погрешность как случайная величина зависит от качества изготовления намоточных элементов датчика (его катушки, в частности). В различных условиях эксплуатации возможно изменение сопротивления обмотки по постоянному току, приводящее к «плаванию» выходного сигнала. Погрешность старения проявляется вследствие износа подвижных элементов датчика, а также изменения электромагнитных свойств магнитопровода.

Проверить реальную величину этого параметра удается только с помощью сверхточных измерительных приборов

При этом обязательно принимаются во внимание кинематические особенности самого датчика. При проектировании и изготовлении чувствительных элементов такая возможность заранее учитывается в его конструкции

Определения понятия датчик

Широко встречаются два основных значения:

· чувствительный элемент, преобразующий параметры среды в пригодный для технического использования сигнал, обычно электрический, хотя возможно и иной по природе, например — пневматический сигнал;

· законченное изделие на основе указанного выше элемента, включающее, в зависимости от потребности, устройства усиления сигнала, линеаризации, калибровки, аналого-цифрового преобразования и интерфейса для интеграции в системы управления. В этом случае чувствительный элемент датчика сам по себе может называться сенсором.

Эти значения соответствуют практике использования термина производителями датчиков. В первом случае датчик это небольшое, обычно монолитное устройство электронной техники, например, терморезистор, фотодиод и т. п., которое используется для создания более сложных электронных приборов. Во втором случае — это законченный по своей функциональности прибор, подключаемый по одному из известных интерфейсов к системе автоматического управления или регистрации. Например, фотодиоды в матрицах (фото) и др.

В зависимости от вида входной (измеряемой) величины
различают:

датчики механических перемещений (линейных и угловых),

-пневматические,

-электрические,

-расходомеры,

-датчики скорости,

-ускорения,

-усилия,

-температуры,

-давления

и др.

Различают три класса датчиков:

— аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;

— цифровые датчики, генерирующие последовательность импульсов или двоич­ное слово;

— бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: «включено/выключено» (иначе говоря, 0 или 1); получили широкое распространение благодаря своей простоте.

2. Датчики положения.

Датчик положения (датчик перемещения) — это устройство, предназначенное для определения местоположения объекта, который может находиться в твердой или жидкой форме, а также быть сыпучим веществом.

Датчики положения являются первичными источниками информации для систем автоматики, как на основе релейных или логических схем, так и на базе программируемых контроллеров. Надежность всей системы определяется надежностью элемента, наиболее подверженного воздействию дестабилизирующих факторов.

Датчик положения (датчик перемещения) бывает двух видов: бесконтактный (индуктивные датчики, магнитные, емкостные, ультразвуковые, оптические) и контактный. Основным представителем второго типа является энкодер — устройство, преобразующее угол поворота объекта в сигнал, позволяющий определить этот угол.

По типу выхода датчик положения (датчик перемещения) разделяется на аналоговый, цифровой и дискретный (выключатели).

2.1.Бесконтактные датчики.

Бесконтактные датчики, бесконтактные выключатели — это приборы промышленной автоматизации, предназначенные для контроля положения объектов.

ГОСТом 26430-85 был введён термин «бесконтактный выключатель». Впоследствии ГОСТом Р 50030.5.2-99 термин заменён на «бесконтактный датчик». В настоящее время для данных изделий используются оба термина.

Характеристики (параметры)

При выборе индуктивного датчика для решения конкретной задачи руководствуются параметрами цепи, в которых он будет функционировать и основной логикой схемы. Поэтому обязательно проверяется соответствие их параметров:

  • напряжение питания – определяет допустимый минимум и максимум разности потенциалов, при которой индуктивный датчик нормально работает;
  • минимальный ток срабатывания – наименьшее значение нагрузки, при котором произойдет переключение;
  • расстояние срабатывания – допустимый промежуток удаления, при котором будет происходить коммутация;
  • индуктивное и магнитное сопротивление – определяет проводимость электрического тока и линий магнитной индукции для конкретной модели;
  • поправочный коэффициент – применяется для внесения поправки, в зависимости от дополнительных факторов;
  • частота переключений – максимально возможное количество раз коммутации в течении секунды;
  • габаритные размеры и способ установки.

Возможно, вам также будет интересно

В статье рассказывается о третьем поколении фотоэлектрических датчиков немецкой фирмы SICK, появление которых в значительной степени обусловлено формированием новых рыночных стандартов. Эти датчики предназначены для решения самых сложных задач в различных промышленных сферах — от пищевой и упаковочной промышленности до автомобильной и полупроводниковой индустрии. Введение Фотоэлектрические датчики широко используются во многих промышленных сферах в составе

Все статьи цикла: Усилители для фотодиодов на операционных усилителях. Часть 1 Усилители для фотодиодов на операционных усилителях. Часть 2 Начало статьи Полоса пропускания Требования к полосе пропускания являются неотъемлемой частью обсуждения преобразователя тока в напряжение по двум причинам. Общий выходной шум увеличивается пропорционально квадратному корню из полосы пропускания системы просто потому, что охватывается более широкий

Все системы автоматизации, мониторинга, управления нуждаются в надежном канале связи. Контролируемые объекты могут находиться на большом удалении от телефонизированных узлов, а потому прокладка телефонного кабеля к такому объекту может быть экономически нецелесообразной.

Индукционные датчики

Индукционные
датчики

предназначены для преобразования
скорости линейных и угловых перемещений
в ЭДС. Они относятся к датчикам
генераторного типа. Принцип действия
индукционных датчиков основан на законе
электромагнитной индукции. Выходным
сигналом индукционных датчиков является
ЭДС, которая пропорциональна скорости
изменения магнитного потока, пронизывающего
витки катушки. Это изменение происходит
за счет перемещения катушки в постоянном
магнитном поле или за счет вращения
ферромагнитного индуктора относительно
неподвижной катушки.

Основным отличием
индукционных датчиков от индуктивных
является то, что в них используется
постоянное магнитное поле, а не переменное
(питание индуктивных датчиков
осуществляется от сети переменного
тока). Постоянное магнитное поле в
индукционных датчиках создается двумя
способами: постоянными магнитами или
катушкой, обтекаемой постоянным током.

На
рис. 19, а
показана
схема датчика с обмоткой w2,
размещенной в воздушном зазоре, в котором
постоянный магнитный поток Ф
создается катушкой w1,
включенной на постоянное напряжение
U=.
При перемещении катушки в магнитном
поле в ней индуцируется ЭДС, пропорциональная
скорости перемещения:
,
гдеk
коэффициент пропорциональности,
зависящий от числа виткови
конструктивных параметров датчика.

Рис. 19. Схемы
индукционных датчиков

На
рис. 19, б
показан
датчик, в котором постоянный магнитный
поток создается с помощью постоянного
магнита с полюсными наконечниками. ЭДС,
индуцируемая во вращающейся катушке,
пропорциональна скорости вращения
Ω:

В обоих этих
датчиках катушки подвижны, поэтому для
отвода от них выходного сигнала (ЭДС)
необходимы гибкие токоподводы или
контактные кольца со щетками.

Индукционный
датчик может быть выполнен и другой
конструкции: с неподвижной катушкой и
вращающимся постоянным магнитом (рис.
19, в).
Надежность
при этом повышается за счет отсутствия
скользящего контакта.

Возможен
и другой способ повышения надежности
датчика по схеме рис. 19, б:
и
катушка, и постоянный магнит неподвижны,
а в зазоре между ними вращается
ферромагнитное кольцо с вырезами (рис.
19, г) или иной элемент, имеющий существенно
разную магнитную проводимость по взаимно
перпендикулярным осям. При вращении
изменяется поток, пронизывающий плоскость
катушки.

В
датчиках (рис. 19, б,
в, г)
в
качестве выходного сигнала можно
использовать частоту ЭДС. Принцип их
действия по существу такой же, как у
синхронных генераторов. Для измерения
частоты вращения используются и
специальные электрические машины малой
мощности — тахогенераторы.

Тахогенератор
постоянного тока (рис. 20, а)имеет
обмотку возбуждения, создающую при
питании постоянным током магнитный
поток Ф.
При вращении якоря в нем создается ЭДС,
пропорциональная частоте вращения п:
,
где k
постоянная, определяемая конструкцией.

Рис.
20. Тахогенераторы

Напомним,
что частота вращения п
обычно
выражается в 1/мин (количество оборотов
в минуту) и связана со скоростью вращения
Ω выражением


или

С помощью коллектора
и щеток выходной сигнал подается на
нагрузку в виде выпрямленного напряжения.

Тахогенератор
переменного тока (рис. 20, б)имеет
на статоре две обмотки, сдвинутые одна
относительно другой на 90 эл. град. Одна
обмотка включается в сеть переменного
тока. При вращении ротора, выполненного
в виде тонкостенного электропроводящего
цилиндра, в другой обмотке наводится
переменная ЭДС, которая пропорциональна
частоте вращения п.
Для
повышения температурной стабильности
в качестве материала полого ротора
используется константан.

Тахогенераторы
обладают высокой чувствительностью и
мощностью выходного сигнала. Общим
недостатком всех генераторных датчиков
является зависимость выходного сигнала
от сопротивления нагрузки.

ПЬЕЗОЭЛЕКТРИЧЕСКИЕ
ДАТЧИКИ

принцип работы, выбор — Asutpp

Как известно, автоматизация систем управления технологическими процессами – система многоуровневая. И в зависимости от поставленной задачи в той или иной отрасли, на разных уровнях, для её решения применяются различные специализированные средства. Благо, прогресс это позволяет.

В этой статье поведем речь о таком полезном изобретении промышленности автоматизации, как индуктивные датчики. Что же они собой представляют, где используются и по каким критериям выбираются? Попробуем вместе разобраться с этими вопросами.

Прежде всего, индуктивный датчик – это бесконтактный выключатель, который не содержит подвижных деталей и практически не подвергнутый к воздействию окружающей среды (за частую, степень защиты – IP67).

Основное предназначение – бесконтактный контроль положения предметов, изготовленных из электропроводных или магнитопроводных материалов. Проще говоря, для регистрации металлических объектов. Выпускаются в разнообразных исполнениях, с различными характеристиками, с дискретными и аналоговыми выходами.

На сегодняшний день существует множество задач, связанных с использованием индуктивных датчиков. Широкое применение они нашли в упаковочных машинах, машинах переработки пластмасс, в сборочных линиях и системах транспортеров. При подключении к обычным счетчикам импульсов, получаем простое и одновременно надежное устройство счета. Эта функция так же используется в различных отраслях.

При выборе индуктивного датчика следует обращать внимание на следующие детали:

Исполнение. Чаще всего имеет цилиндрическую форму с нарезанной резьбой по всей длине датчика. Стандартная линейка классификации по резьбе – М5,М8,М12,М18 и М30. Материал – нержавейка. Крепление осуществляется с помощью двух гаек, которые накручиваются на корпус.

Расстояние срабатывания. Напрямую зависит от характеристик встроенного генератора, на который влияют вихревые токи «измеряемого» предмета. Диапазон варьируется от 1мм….до25-30мм, в зависимости от производителя.
Тип выхода. Прежде всего классифицируются на аналоговый (1-10В,4-20mA) и дискретный. Дискретный в свою очередь, отталкиваясь от типа транзисторного выхода вторичного прибора, разнится на PNP-тип и NPN-тип

Так же немаловажно определиться, будет ли это нормально открытый выходной элемент (NO) или же нормально закрытый (NC).
Напряжение питания. Постоянный ток – 10….30VDC; Переменный ток – 20….265VAC.
Монтаж

Можно выделить два основных типа: скрытый и выступающий.

Электрическое подсоединение. Обычно используется двухпроводный или трехпроводный кабель, но имеет место и коннекторное подключение.

Что ж, подводя итог, стоит еще отметить тот факт, что индуктивные датчики очень удобные в эксплуатации, не занимают много времени при инсталляции и монтаже, а так же вполне доступны по своей ценовой категории. Помните, правильный выбор маленькой детали – залог безотказной работы всего механизма.

УСТРОЙСТВО, ХАРАКТЕРИСТИКИ, ПРИНЦИП ДЕЙСТВИЯ

Индуктивные (или бесконтактные) датчики, несмотря на различную специфику, имеют схожее внутреннее устройство. Металлический либо пластиковый корпус залитый компаундом (электроизоляционный состав на основе эпоксидных смол, полимеров, битума), внутри располагаются генератор ЭМП, триггер (в аналоговых устройствах детектор), индикатор состояния (светодиод), усилитель сигнала.

Генератор состоит из полупроводникового элемента, производящего ток определенной частоты, который через катушку индуктивности, с ферритовым сердечником, создает переменное магнитное поле.

При вхождении в зону чувствительности датчика, токопроводящего материала (металлического сигнального флажка или другого исполнительного элемента), индуктивность системы меняется, в свою очередь, воздействую на амплитуду тока генератора. По достижении значений срабатывания, на триггере, формируется управляющий сигнал.

Усилитель увеличивает мощность импульса до необходимых значений, после чего, в зависимости от назначения прибора, он подается на коммутационный блок (размыкает — замыкает цепь) или далее, на средство измерения или АСУ.

По устройству датчики подразделяют на:

  • одинарные — с одним магнитопроводом, ветвью измерения. Схема реализована в бесконтактных выключателях;
  • дифференциальные — с двумя магнитопроводами ш-образной формы, взаимно компенсирующим воздействие на сердечник, что повышает чувствительность и точность измерений. По сути, представляют собой систему двух одинарных датчиков, с общим якорем;
  • трансформаторные — коэффициент трансформации изменяется при перемещении якоря, генерируя определенное напряжение на выходе вторичной обмотки. Принцип используется в элементах фиксации угловых, небольших линейных перемещений.

Индуктивные датчики работают как на постоянном токе (напряжение 12, 24, 42, 60 В), так и на переменном (до 220 В). Характеризуются следующими параметрами:

  • максимальный ток;
  • частота переключений — для большинства моделей до 1-5 кГц;
  • предел срабатывания — минимальное значение физической величины вызывающее отклик;
  • скорость срабатывания (в микросекундах);
  • климатическое исполнение — диапазон температур при которых устройство гарантированно работает (от -40С до +60С).

Преимуществами индуктивных элементов, перед аналогичными устройствами других принципов действия, являются:

  • надежность конструкции — отсутствие движущихся элементов, контактов, полная герметичность, прочность;
  • ресурс работы до 10 лет, не требуют какого либо обслуживания;
  • высокая чувствительность, скорость и частота срабатывания;
  • мощность выходного сигнала до 100 Вт и выше;
  • доступность, широкий выбор типов и производителей.

Недостатки:

  • требовательны к «чистоте» и постоянству питающего тока;
  • чувствительны к воздействию внешних магнитных полей, возможно искажение выходного сигнала.

Рис.2.1. Внешний вид бесконтактного датчика

Бесконтактный выключатель (далее ВБ) осуществляет коммутационную операцию при попадании объекта воздействия в зону чувствительности выключателя. Отсутствие механического контакта между воздействующим объектом и чувствительным элементом ВБ обеспечивает высокую надежность его работы

Рис.2.2. Бесконтактный выключатель

Упрощенно, функциональная схема бесконтактного выключателя состоит из трех блоков:

Рис.2.3. Функциональная схема бесконтактного выключателя

При приближении объекта воздействия к активной поверхности чувствительного элемента происходит срабатывание бесконтактного выключателя. При этом коммутационный элемент производит замыкание или размыкание (или выполняет обе указанные операции) в цепях постоянного тока до 400 мА и в цепях переменного тока до 250 мА.

Бесконтактные датчики положения классифицируются по принципу действия чувствительного элемента — индуктивный, оптический, емкостный
и др.

Бесконтактные выключатели — это первичные приборы для автоматизации технологического процесса различных отраслей промышленности, таких как

· станкостроение,

· автомобилестроение,

· нефтехимическая промышленность,

· машиностроение,

· пищевая промышленность и пр.

Столь широкая область применения ВБ обусловлена большим количеством возможных технологических решений, реализуемых с их помощью:

· подсчёт количества объектов,

· контроль положения объекта,

· регистрация наличия или отсутствия объекта,

· отбор объектов по их габаритам, цвету и другим физическим свойствам,

· определение скорости,

· определение угла поворота

и многое другое.

2.1.1. Индуктивные датчики.

Индуктивный датчик — бесконтактный датчик предназначенный для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Индуктивный датчик распознает и соответственно реагирует на все токопроводящие предметы.

Индуктивные датчики широко используются для решения задач АСУ ТП. Выполняются с нормально разомкнутым или нормально замкнутым контактом.

Принцип действия
основан на изменении параметров магнитного поля, создаваемого катушкой индуктивности внутри датчика.

Принцип действия
бесконтактного конечного выключателя (ВК) основан на изменении амплитуды колебаний генератора при внесении в активную зону датчика металлического, магнитного, ферромагнитного или аморфного материала определенных размеров. При подаче питания на конечный выключатель в области его чувствительной поверхности образуется изменяющееся магнитное поле, наводящее во внесенном в зону материале вихревые токи, которые приводят к изменению амплитуды колебаний генератора. В результате вырабатывается аналоговый выходной сигнал, величина которого изменяется от расстояния между датчиком и контролируемым предметом. Триггер преобразует аналоговый сигнал в логический, устанавливая уровень переключения и величину гистерезиса

Характеристики индуктивных датчиков

Чем отличаются датчики.

Конструкция, вид корпуса

Тут два основных варианта  – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность

Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо  соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector