Как определить фазу и ноль.
При подключении любого электроприбора, возникает закономерный вопрос: где фаза
и гденоль ?
Для начала попробуем разобраться, как найти фазу. Самый простой способ, существующий на данный момент, это использовать индикаторную отвертку (рисунок 7). Она состоит из следующих элементов:
Если отдельные игроки должны быть удалены или имена изменены позже, просто прокрутите вниз по стартовому экрану и удалите игрока по всей длине линии или отредактируйте отдельные части. Прежде чем использовать таблицу, вы должны ознакомиться с ней и практиковать ее.
Примечание. Также дисплей и малина со всеми компонентами не совсем дешевы. Таким образом, вы можете придать результат красиво на телевизоре. Выходной сигнал зуммера требует, конечно, транзистора в качестве усилителя, а входы штырей естественно требуют предустановленных резисторов.
- токопроводящее жало — 1,
- индикатор — 2,
- контактная площадка — 3.
Механизм использования такой отвертки довольно прост: токопроводящим жалом касаемся контролируемого участка электрической цепи, пальцем руки — контактной площадки, если индикатор светится, это свидетельствует о наличии фазы.
Еще один способ проверки фазы — использовать мультиметр, или его еще называют тестером. Однако, данный способ более трудоемкий. Мультиметр может работать в различных режимах, в нашем случае необходимо выбрать режим измерения переменного напряжения и установить предел более 220 Вольт. Берем один щуп мультиметра, какой — не имеет значения, и касаемся им участка измеряемой цепи, а другим щупом — естественного заземлителя, в роли которого может быть батарея отопления, либо металлические водопроводные трубы. Индикатором того, что на данном участке цепи присутствует фаза
, будут показания мультиметра, соответствующие напряжению сети, то есть около 220 В (рисунок 8).
Расцветка в сети 220В и 380В
Монтаж одно- и трехфазных электрических сетей облегчается, если проводка выполнена многоцветным проводом. Ранее для однофазной квартирной проводки использовали плоский двухжильный провод белого цвета. При монтаже и ремонте для исключения ошибок необходимо было прозванивать каждую жилу в отдельности.
Выпуск кабельной продукции с окраской жил разными цветами снижает трудоемкость работ. Для обозначения фазы и нуля в однофазной проводке принято использовать следующие цвета:
- красный, коричневый или черный — фазный провод;
- остальные цвета (предпочтительно синий) — нулевой провод.
Маркировка фаз в трехфазной сети немного отличается:
- красный (коричневый) — 1 фаза;
- черный — 2 фаза;
- серый (белый) — 3 фаза;
- синий (голубой) — рабочий ноль (нейтраль)
- желто-зеленый — заземление.
Кабельная продукция отечественного производства соответствует стандарту окраски жил, поэтому многофазный кабель содержит разноокрашенные жилы, где фаза — белый, красный и черный, ноль — синий, а земля — желто-зеленый проводники.
При обслуживании сетей, смонтированных по современным стандартам, можно безошибочно определить назначение проводов в распределительных коробках. При наличии жгута разноцветных проводов коричневый из них будет обязательно фазным. Нулевой провод в распределительных коробках ответвлений и разрывов не имеет. Исключение составляют отводы к многополюсным коммутирующим аппаратам с полным размыканием цепи.
Как различить фазу, ноль, землю
Основные определения по теме Общее заземление
Фаза и нуль в электрике
Зачем разделять PEN проводник, если между PE и N шинами ставится перемычка – «физика» процесса
Прямого ответа на этот вопрос в ПУЭ и ГОСТах не дается – есть только рекомендации «как это сделать», а «почему» – не рассматривается, скорее всего, исходя из того предположения что и так должно быть ясно. Поэтому все последующие объяснения надо воспринимать как мнение автора, подкрепленное принципами подключения электропроводки и требованиями ПУЭ.
Главные моменты здесь следующие:
- В любой схеме, где иллюстрируется разделение PEN проводника на PE и N, заземление всегда ставится первым и уже от него идет перемычка к рабочему нолю. Это основное требование, от которого надо отталкиваться при разделении PEN проводника – наоборот не делается никогда и ни при каких условиях.
- Даже отдельно сделанное заземление наиболее эффективно при подключение через автомат УЗО. В противном случае даже если напряжение с корпусом электроприбора Будет уходить в землю всё равно остается риск поражения человека током хотя и значительно меньший.
- Любой провод обладает неким электрическим сопротивлением, соответственно, чем длиннее провод, тем выше его сопротивление электрическому току.
Чтобы понять саму «физику процесса» надо рассмотреть как ведут себя различные схемы подключения при возникновении нештатной ситуации.
Если нет перемычки и автомата УЗО, ноль и заземление не связаны
Фаза попадает на корпус прибора от него уходит на шину заземления из него уходит в землю по которой идет на трансформаторная подстанцию.
Если взять среднее значение сопротивления заземляющего устройства в 20 Ом, ток короткого замыкания не будет достаточно большим для отключения вводного автомата. Соответственно, электрическая цепь будет работать до тех пор, пока не перегорит повреждённый участок (в любом случае в этом месте будет повышенная температура и провод рано или поздно испортится), или же повреждение не разовьется в полноценное короткое замыкание между фазой и нулем.
В лучшем случае здесь человека может ощутимо «пощекотать» током или устройство может испортиться. В худшем, прибор может воспламениться и спровоцировать пожар.
Если есть перемычка между нолем и заземлением, нет автомата УЗО
В таком случае схема работает примерно так же как если бы просто в дом завести PEN проводник, с той лишь разницей, что человек будет более защищен благодаря заземлению
Это будет происходить как раз из-за длины провода – так как в любом случае ВРУ находится на некотором удалении от квартиры или дома, во внимание надо принимать сопротивление провода
При замыкании фазы на корпус прибора, ток утечки пойдет на шину заземления, где у него будет только два выхода: часть его уйдет в землю, а другая вернется по нулевому проводу, спровоцировав отключение вводного квартирного автомата.
То есть, в данном случае перемычка нужна для того чтобы сработал защитный автоматический выключатель.
Если есть перемычки между PE и N, установлен УЗО
Так как у нулевого и заземляющего провода есть определенное сопротивление электрическому току, понятно, что в этом случае УЗО будет срабатывать в штатном режиме. Если появляется замыкание на корпус прибора, ток утечки, в первую очередь, идет по проводу к самому УЗО, а дальше уже уходит на ВРУ жилого дома. Здесь он опять же частично уходит в землю и частично через перемычку возвращаются назад провоцируя выключения вводного автомата, но до этого, скорее всего, дело не дойдет, так как УЗО сработает раньше.
Понятно, что в этом случае перемычка не играет особой роли и является больше лишней перестраховкой на тот почти невероятный случай, если не сработает защитный автомат УЗО.
Если нет перемычки между PE и N, установлен УЗО
Такая схема будет отрабатывать точно так же, как если бы перемычка между заземлением и рабочим нулем присутствовала. Единственное исключение в ней это отсутствие страховки на тот случай, если вдруг УЗО выйдет из строя. Тогда схема будет отрабатывать по первому варианту – вводной автомат может не сработать до тех пор, пока замыкания на корпус прибора не превратится в короткое замыкание между фазой и нулем.
На самом деле, такой вариант событий практически невозможен, потому что по факту такое подключение это уже схема заземления TN-S или даже TT, в которых предусмотрена двухфакторная защита – без нее такое подключение не примет энергонадзор.
Краткое описание работы систем заземления
Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.
Возникает путаница в терминологией – одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.
ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.
Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.
Вообще, заземление это более широкое понятие, чем зануление.
Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?
Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.
Тут важными считаю две вещи:
- Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
- Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.
И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.
В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновении к фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.
Как окрашиваются провода фазы
При работе с проводкой наибольшую опасность представляют фазные провода. Прикосновение к фазе, при определенных обстоятельствах, может стать летальным, потому, наверное, для них выбраны яркие цвета. Вообще, цвета проводов в электрике позволяют быстрее определить которые из пучка проводов наиболее опасны и работать с ними очень аккуратно.
Расцветка фазных проводов
Чаще всего фазные проводники бывают красного или черного цвета, но встречается и другая окраска: коричневый, сиреневый, оранжевый, розовый, фиолетовый, белый, серый. Вот во все эти цвета может быть окрашены фазы. С ними проще будет разобраться, если исключить нулевой провод и землю.
На схемах фазные провода обозначаются латинской (английской) буквой L. При наличии нескольких фаз, к букве добавляют численное обозначение: L1, L2, L3 для трехфазной сети 380 В. В другой версии первая фаза обозначается буквой A, вторая — B, третья — C.
Цвет провода заземления
По современным стандартам, проводник заземления имеет желто-зеленый цвет. Выглядит это обычно как желтая изоляция с одной или двумя продольными ярко-зелеными полосами. Но встречаются также окраска из поперечных желто-зеленых полос.
Такого цвета могут быть заземление
В некоторых случаях, в кабеле могут быть только желтые или ярко-зеленые проводники. В таком случае «земля» имеет именно такой цвет. Такими же цветами она отображается на схемах — чаще ярко-зеленым, но может быть и желтым. Подписывается на схемах или на аппаратуре «земля» латинскими (английскими) буквами PE. Так же маркируются и контакты, к которым «земляной» провод надо подключать.
Иногда профессионалы называют заземляющий провод «нулевой защитный», но не путайте. Это именно земляной, а защитный он потому, что снижает риск поражения током.
Какого цвета нулевой провод
Ноль или нейтраль имеет синий или голубой цвет, иногда — синий с белой полосой. Другие цвета в электрике для обозначения нуля не используются. Таким он будет в любом кабеле: трехжильном, пятижильном или с большим количеством проводников.
Какого цвета нулевой провод? Синий или голубой
Синим цветом обычно рисуют «ноль» на схемах, а подписывают латинской буквой N. Специалисты называют его рабочим нулем, так как он, в отличие от заземления, участвует в образовании цепи электропитания. При прочтении схемы его часто определяют как «минус», в то время как фаза считается «плюсом».
Как проверить правильность маркировки и расключения
Цвета проводов в электрике призваны ускорить идентификацию проводников, но полагаться только на цвета опасно — их могли подключить неправильно. Потому, перед началом работ, стоит удостовериться в том, правильно ли вы определили их принадлежность.
Берем мультиметр и/или индикаторную отвертку. С отверткой работать просто: при прикосновении к фазе загорается светодиод, вмонтированный в корпус. Так что определить фазные проводники будет легко. Если кабель двухжильный, проблем нет — второй проводник это ноль. Но если провод трехжильный, понадобиться мультиметр или тестер — с их помощью определим какой из оставшихся двух фазный, какой — нулевой.
Определение фазного провода при помощи индикаторной отвертки
На приборе переключатель выставляем так, чтобы выбранной была шакала более 220 В. Затем берем два щупа, держим их за пластиковые ручки, аккуратно дотрагиваемся металлическим стержнем одного щупа к найденному фазному проводу, вторым — к предполагаемому нулю. На экране должно высветиться 220 В или текущее напряжение. По факту оно может быть значительно ниже — это наши реалии.
Если высветилось 220 В или чуть больше — это ноль, а другой провод — предположительно «земля». Если значение меньше, продолжаем проверку. Одним щупом снова прикасаемся к фазе, вторым — к предполагаемому заземлению. Если показания прибора ниже чем при первом измерении, перед вами «земля» и она должна быть зеленого цвета. Если показания оказались выше, значит где-то напутали при и перед вами «ноль». В такой ситуации есть два варианта: искать где именно неправильно подключили провода (предпочтительнее) или просто двигаться дальше, запомнив или отметив существующее положение.
И, в завершение, позвольте совет: при прокладке проводки и соединении проводов соединяйте всегда проводники одного цвета, не путайте их. Это может привести к плачевным результатам — в лучшем случае к выходу аппаратуры из строя, но могут быть травмы и пожары.
Отличия зануления от заземления
Последствия при обрыве «нуля»
Последствия при обрыве нейтрального проводника могут быть совершенно разные. Все зависит от того в какой сети произошло аварийное отключение нуля: трехфазной или однофазной. Рассмотрим оба случая отдельно друг от друга.
- Трехфазная сеть. Отгорание или обрыв нейтрального проводника в трехфазной сети может привести к полному перекосу питающих фаз в результате которого на одной линии электропроводки, питающей бытовую технику и осветительные приборы может возникнуть повышенное напряжение в 380 В, а на другой понизиться вплоть до нулевой величины. Перенапряжение, а также снижение напряжения электрической сети, является опасным для любых электроприборов и электронных устройств. Предельные величины напряжения в электропроводке могут вызвать возгорание как самих проводов, так и электроприборов, что приведет к пожару в помещение.
- Однофазная сеть. Совершенно другая картина возникает при обрыве «нуля» в однофазной сети, которая заводится в квартиры и дома от распределительного щита. Каждая линия питания группы осветительных приборов и бытовой техники состоит из двух проводников: «нуля» и фазы. К тому же в большинстве современных многоэтажных домах кабель электропроводки имеет третью жилу для подключения к электроприборам защитного заземления, чего нет в старых постройках. При обрыве «нуля» в однофазной сети на нулевом проводе появляется опасное для человека напряжение в 220 В.
Как мы видим, при обрыве нейтрального провода в любой сети как трехфазной, так и однофазной, может возникнуть ряд негативных и опасных последствий. Что делать, чтобы исключить такое развитие событий? Конечно, выход есть! Необходима защита от отгорания «нуля» или его обрыва! Ниже мы рассмотрим все виды защиты от обрыва или отгорания «нуля» в трехфазных и однофазных сетях.
Цветная маркировка проводов и кабелей
Всем привет. Рад вас видеть у себя на сайте. Я продолжая наполнять статья рубрику электропроводка. В прошлый раз мы с вами
говорили про то, как расшифровывается маркировка провода ПуВВ
А сегодня давайте поговорим о такой важной теме как цветная маркировка проводов и кабелей
Согласитесь со мной, что в нынешнее время не один электромонтёр не может себе представить, как можно смонтировать хоть малейший участок какой-то электрической цепи без использования проводов и кабелей с разноцветной изоляцией. А эта разноцветная изоляция придумана не просто так – для красоты, а несёт в себе определённую информацию.
Обратите внимание
Во-первых, каждый определённый цвет провода указывает на то к какой группе он принадлежит, и куда его нужно подключать (облегчает монтаж сетей).
Во-вторых, значительно уменьшается вероятность ошибочного подключения проводов при монтаже, что впоследствии могло бы привести к короткому замыканию в то время когда на сети будет подано напряжение для проверки. А так же снижается вероятность поражения электрическим током тех людей, которые в дальнейшем будут обслуживать и ремонтировать эти сети.
Все цвета проводов выбраны и приведены к единому стандарту – ПУЭ (Правила устройства электроустановок).
В этой книге указано какого цвета должны быть жилы проводов и кабелей. А так же какая у них должна быть буквенная и цифровая маркировка.
Цвет проводов и шин переменных трёхфазных сетей
На всех электрических станциях и подстанциях, на высоковольтных вводах и выводах трансформаторов и других любого рода электрических установках, проводники и шины окрашиваются в такие цвета:
фаза A – красится жёлтым цветом
фаза B – красится зелёным цветом
фаза C – красится красным цветом
ноль N – окрашивается в синий цвет.
Кстати, чтобы не путаться в цветах, могу дать вам один хороший практический совет
Обратите внимание на то, что все цвета идут по алфавиту. Надеюсь, алфавит вы знаете, и помните, что сначала стоит буква «ж», потом «з», а потом «к»
Я когда ещё учился в лицее, то именно таким образом запомнил последовательность окрашивания шин.
А вот у кабелей расцветка на много разнообразнее. Согласно правилам устройства электроустановок, фазные провода всех существующих монтажных кабелей должны иметь окраску следующих цветов: красный, чёрный, серый, коричневый, розовый, белый, фиолетовый, оранжевый, бирюзовый.
Совмещённый рабочий ноль и защитный ноль (PEN) – должен иметь синий цвет по всей длине провода и жёлто-зелёные полосы по концам. Или же может быть наоборот – жёлто-зелёный цвет по всей длине, а на концах синий цвет.
Что касается однофазной сети, то она может быть выполнена путём ответвления от трёхфазной. В такой ситуации желательно чтобы цвета проводников совпадали по цвету.
Это нужно учесть при проектировании сетей, и при закупке материалов. А так же нужно покупать провод в таком количестве чтобы его хватило полностью на всю разводку.
Важно
К примеру, если делать проводку в квартире, то кабеля должно хватить на все комнаты.
Если случилось так, что приходится делать монтаж проводами не имеющие цветной маркировки, а такие имеются, ведь не все заводы изготовители придерживаются правил, то тогда на концах нужно использовать цветную термоусадку, кембрик или делать пометки цветной изолентой.
Цветная маркировка в сетях постоянного тока
Не стоит так же забывать о том, что кроме сетей переменного тока, ещё существуют сети постоянного тока. Но в таких сетях используются только два проводника: провод с положительным зарядом (+), и провод с отрицательным зарядом (-).
По всем нормативным документам, которые регламентируют цвет изоляции, провод положительного заряда, то есть плюс — окрашивается в красный цвет, а с отрицательным зарядом, минус — окрашивается в синий цвет.
Ещё в последнее время я часто встречаю, что минус красится чёрным цветом.
А теперь для закрепления материала я советую вам посмотреть видео ролик.
С уважением Александр!
Системы заземления TN-C, TN-S, TN-C-S разделение на типы
Системы заземления делятся на следующие типы:
Система TN. Переводится, как T (terre, земля), N (neuter, нейтраль). Система заземления, при которой, открытые проводящие части электроустановки присоединены к заземленной нейтрали источника питания. Иначе, эта система называется система с глухозаземленной нейтралью.
Подсистемами системы TN являются:
- Система TN-C (C: combined, объединённая);
- Система TN-S (S: separated, раздельная);
- Система TN-C-S.
Чтобы начать разбор, каждой из этих систем заземления, вспомним, что в электропитании «участвуют»:
- Фазный (ые) провод (а). Обозначаются на схемах латинской буквой L при однофазном питании и L1,L2,L3 или A, B, C при трехфазном питании.
- Нулевой рабочий проводник. Обозначается буквой N.
- Нулевой защитный проводник, обозначаемый буквами PE (Protective conductive).
Также отмечу, что система заземления типа TN в «чистом виде» практически не используется, поэтому начнем с устаревшей, но распространенной системы заземления TN-C.
Важно понимать, что начальной точкой заземления дома является заземление источника питания. Источник питания это трансформатор в трансформаторной подстанции, последней перед вашим домом
Трансформатор понижает высоковольтное напряжение (6-10 кВ) высоковольтных линий до рабочего напряжения 0,4кВ (400Вольт). В системах TN нейтраль трансформатора подстанции подсоединена к контуру заземления, сделанному рядом или вокруг трансформатора (подстанции).
Система TN-C
В системе заземления TN-C, нет отдельного защитного проводника PE, идущего от трансформатора к дому. Нейтраль трансформатора «глухо» заземляется в подстанции и идет до вводного устройства дома (главного распределительного щита), как объединенный защитный проводник PE и нулевой рабочий проводники N. Называют такой проводник PEN проводник (защитный заземляющий нейтральный проводник).
Система TN-S
В системе TN-S, нейтраль трансформатора не заземляется, а заземляется отдельный проводник (PE), который и идет отдельно до ГРЩ (главного распределительного щита) дома. Для питания дома это пятипроводная система. В квартирах она становится трехпроводной.
Система TN-C-S
Эта система является реконструированной системой TN-C. Систему TN-C-S можно получить из системы TN-C разделив PEN проводника идущий от подстанции на PE и N проводники, в ГРЩ дома. ГРЩ относится к общей распределительной системы дома.
В системе TN-C-S заземления система TN-C не используется ниже системы TN-S. То есть после разделения PEN проводника, нельзя объединять PE и N проводники.