Выяснение воздухообмена по количеству жильцов
Свои особенности имеет определение потребного количества воздуха, которое поступает через общеобменную систему вентиляции. Она нужна, чтобы в помещение поступал свежий очищенный воздух, а наружу отводились:
- избыток тепла;
- неоправданно высокое количество влаги;
- вредные вещества, возникшие вследствие человеческой жизнедеятельности или при использовании жилища.
Чаще всего в любом здании объем воздуха, который проходит в здание путем общеобменной вентиляции, равен отводимому ею объему. Но в ряде случаев, в том числе в особо чистых производственных цехах, критически важны меры противодействия пыли. Основная из них состоит в том, что приток существенно больше, чем вытягиваемая масса. Обычно на 1 человека должно приходиться по 30 куб. м. поступающего воздуха, если помещение проветривается. А вот если по какой-то причине открыть окна невозможно, количество необходимого воздуха сразу удваивается.
Общеобменная вентиляция в таком случае должна быть выстроена по приточно-вытяжному типу с естественным гравитационным движением. Определив число тех, кто будет находиться в комнате, умножают его на часовой персональный расход воздуха. Вытяжка естественного типа делается в шахте вертикального типа, доходящей до кровли. Тягу в канале определяют, умножая темп движения воздуха на площадь сечения внутри шахты. Для общественных зданий каждого типа (медицинских, образовательных, производственных и других), а также для их отдельных частей есть свои санитарно-гигиенические стандарты.
Ошибки при вычислении квадратуры и объема воздуховодов грозят тем, что производительность очень мала и не отвечает потребностям. Чтобы исключить возникновение проблем, требуется заранее изучить санитарно-гигиенические правила и нормы. Рекомендуется провести расчет как по всему помещению в целом, так и по отдельным сегментам. Дополнительно сократить вероятность промаха помогает использование сайтов со специальными калькуляторами. Это надежнее, чем вычисления на листе бумаги.
Проводим расчет для ХП.
Последовательность расчета (см. рисунок 2):
1. На J-d диаграмму наносим (•) Н — с параметрами наружного воздуха:
tН„Б“ = -28°C; JН„Б“ = -27,8 кДж/кг
и определяем недостающий параметр — абсолютную влажность или влагосодержание dН„Б“.
2. Принимаем температуру воздуха в помещении.
При наличии тепловых избытков лучше принять верхний предел
tВ = 22°С.
В этом случае стоимость вентиляции будет минимальной.
3. Определяем тепловое напряжение помещения
4. Исходя из величины теплового напряжения помещения, находим градиент повышения температуры по высоте
Градиент температуры воздуха по высоте помещений общественных и гражданских зданий
Тепловая напряженность помещения Qя /Vпом | grad t, °C/м | |
---|---|---|
кДж/м3 | Вт/м3 | |
Более 80 | Более 23 | 0,8 ÷ 1,5 |
40 ÷ 80 | 10 ÷ 23 | 0,3 ÷ 1,2 |
Менее 40 | Менее 10 | 0 ÷ 0,5 |
и рассчитываем температуру воздуха, удаляемого из верхней зоны помещения
ty = tB + grad t(H-hр.з.), ºС
где: Н — высота помещения, м;hр.з. — высота рабочей зоны, м.
На J-d диаграмму наносим изотерму уходящего воздуха ty.
5. Принимаем, что температура приточного воздуха tП отличается от внутренней температуры воздуха в помещении tВ не более чем на 5°С.
tП = tВ — 5 = 22 — 5 = 17°С.
На J-d диаграмму наносим изотерму приточного воздуха .
6. Проводим линию постоянного влагосодержания — d = const из точки наружного воздуха – (•) Н, до изотермы .
Получаем точку — (•) К с параметрами воздуха после нагрева в калорифере.
Одновременно это будет и точка приточного воздуха — (•) П.
6. Определяем величину тепло-влажностного отношения
Для нашего примера примем величину тепло-влажностного отношения
На J-d диаграмме проводим линию тепло-влажностного отношения через (•)0 на шкале температур, а затем через точку приточного воздуха — (•) П проводим параллельную линию линии тепло-влажностного отношения до пересечения с изотермой внутреннего — tВ и уходящего — tУ воздуха. Получаем точки — (•) В и (•) У.
7. По формулам определяем воздухообмен по полному теплу
и по влагосодержанию
Полученные численные значения должны совпадать с точностью ±5%.
8. Полученные величины воздухообменов сравниваются с нормативным воздухообменом и принимается большая из величин.
Насколько точная сумма отображается
Вы должны знать, что невозможно на глаз выполнить подсчеты. Калькулятор выдает примерную стоимость реализации, а точная рассчитывается после создания сметы. Сперва к вам приезжает замерщик, исследует помещение. Он сохраняет нижеуказанные данные:
- Материал стен;
- Тип потолка, пола;
- Размеры комнат и подсобных узлов;
- Аэродинамические свойства объекта;
- Состояние воздуха на территории;
- Тип предприятия.
На деле параметров значительно больше. Вдобавок ко всему вы обсуждаете ценовой сегмент дополнительного оборудования, т. к. у нас в наличии оборудование по средней и высокой стоимости. Просто некоторым клиентам выгоднее проводить ремонт раз в несколько лет, другим хочется сделать сеть единожды и забыть о ней.
Составление сметы: перед ней реализуется монтажная схема, учитывающая основные параметры. Тут же производятся финальные расчеты системы вентиляции онлайн, на основе которых изготавливается смета. В ней прописываются все материалы, детали вплоть до крепежа. При надобности вы корректируете ее, удаляя и меняя нужные узлы.
2 Значения для разных зданий
Аэродинамический расчет системы вентиляции и разработка мероприятий по интенсификации воздухообмена в здании
Определяем располагаемое давление для
помещений первого этажа по формуле
(12.1), Па:
где – плотность наружного воздуха, принимаемая
по нормам при температуре5 oCравная1,27кг/м3;
– плотность внутреннего воздуха, кг/м3;
– расстояние от оси решетки до плоскости
выпускного отверстия, м.
По аналогии определяем располагаемое
давление для всех этажей:
После определения объемов воздухообмена
и располагаемого давления вычерчиваем
расчетную аксонометрическую схему
системы вентиляции (рис.),
разбивают ее на участки; при этом первым
участком является вертикальный канал,
наиболее удаленный от вытяжной шахты.
Каждому расчетному участку присваивается
номер, в числителе выносной линией
указывается объем воздуха, м3/час,
движущегося по участку, а в знаменателе
— длина участка.
Задаваясь скоростью воздуха
в переделах 0,3…1 м/с, определяем площадь
живого сечения канала результаты заносим
в 5 столбецтаблицы
№, м2:
(12.2)
где L– расход воздуха
перемещаемого по расчетному каналу,
м3/час;
w– задаваемая скорость
воздуха в канале, м/с.
По площади живого сечения принимаем
размеры канала системы ВЕ-1 (270140)
при этом в кирпичных стенах они должны
быть кратными размеру кирпича, затем
необходимо сделать перерасчет скорости
по формуле, м/с (результаты расчета
заносим в столбец 4таблица
№):
где d– диаметр круглого
воздуховода, который эквивалентен по
потерям на трение принятому прямоугольному
или квадратному каналу, м.
Эквивалентный диаметр определяют по
формуле, м
Определяем потери давления системы
ВЕ-1, Па:
;
где — потери давления на трение (по длине) и
наместные сопротивления соответственно,
Па.
После расчета каждой ветви определяется
суммарное аэродинамическое сопротивление
ветви. Для удаления требуемого расхода
воздуха полученное сопротивление ветви
должно быть менее
для помещения, где расположена расчетная
вентиляционная решетка. В противном
случае необходимо увеличить сечение
решетки и вентиляционных каналов. В
случае невозможности подбора требуемых
сечений решетки и каналов по
архитектурно-планировочным условиям
необходима разработка мероприятий для
интенсификации удаления воздуха,
например установка дефлектора с блоком
поддержания постоянного разрежения в
шахте.
Потери давления на трение обусловлены
трением жидкости о стенки трубы/канала
и внутренним трением в потоке и выражаются
формулой Дарси-Вейсбаха:
,
где – коэффициент гидравлического трения(считать или просто
принять 0,04);
– длина участка, м;
– эквивалентный диаметр воздуховода
принимается в соответствии с расчетом,
м;
– плотность перемещаемой среды принимаем
1,213 кг/м3;
– фактическая скорость перемещаемой
среды для системы ВЕ-1 равная 0,94 м/с.
Коэффициент гидравлического трения
определяем по формуле:
где ∆— абсолютная шероховатость
воздуховодов принимаем равной 0,003, м;
Re– число Рейнольдса находим по
формуле:
где μ– динамическая вязкость, для
воздухаμ=17,3·10-6 Па·с;
Местные потери давления обуславливаются
изменением скорости потока по величине
или направлению и выражаются формулой
Вейсбаха, Па:
,
где – сумма коэффициент местного сопротивления
(КМС) принимаемая по таблице 3 Приложения
13.
Аэродинамический расчет производится
для наиболее удаленных от вытяжной
шахты каналов, удаляющих воздуха с
первого и последнего этажа. Результаты
расчета сводятся в табл.
10.2
Для других систем вентиляции расчет
выполняется аналогично.
1наверное необходимо вставить в список
литературы
2Возможно добавить поквартирное
3Добавить в приложение все технические
характеристики теплообменника
4или лучше записать располагаемый
перепад давления в ТС
Особенности определения длины вентиляционных труб
Еще одним важным параметром при проектировании систем вентиляции является длина наружной трубы. Она объединяет все находящиеся в доме каналы, по которым осуществляется циркуляция воздуха, и служит для его вывода наружу.
Расчет по таблице
Высота вентиляционной трубы зависит от ее диаметра и определяется по таблице. В ее ячейках указано сечение воздуховодов, а в столбце слева — ширина труб. Их высота указывается в верхней строке и обозначается в мм.
Подбор высоты трубы вентиляции по таблице
При этом нужно учитывать:
- Если вентиляционная труба находится рядом с , то их высота должна совпадать, чтобы избежать проникновения дыма внутрь помещений во время отопительного сезона.
- При расположении воздуховода от конька или парапета на расстоянии, которое не превышает 1,5 м, его высота должна быть больше 0,5 м. Если труба находится в пределах от 1,5 до 3 м от конька крыши, то она не может быть ниже его.
- Высота вентиляционной трубы над крышей плоской формы не может быть меньше 0,5 м.
Расположение вентиляционных труб относительно конька крыши
При выборе трубы для сооружения вентиляции и определения ее месторасположения необходимо предусмотреть достаточное сопротивление ветру. Она должна выдерживать шторм в 10 баллов, что составляет 40-60 кг на 1 м 2 поверхности.
Использование программного обеспечения
Пример расчета естественной вентиляции с помощью специальных программ
Расчет естественной вентиляции менее трудоемок, если воспользоваться для этого специальной программой. Для этого сначала определяется оптимальный объем притока воздуха, в зависимости от назначения помещения. Затем на основании полученных данных и особенностей проектируемой системы делают расчет вентиляционной трубы. При этом программа позволяет учитывать:
- среднюю температуру внутри и снаружи;
- геометрическую форму воздуховодов;
- шероховатость внутренней поверхности, которая зависит от материала труб;
- сопротивление движению воздуха.
Система вентиляции с трубами круглого сечения
В результате получают необходимые размеры вентиляционных труб для сооружения инженерной системы, которая должна обеспечивать циркуляцию воздуха в определенных условиях.
В процессе расчета параметров вентиляционной трубы следует обращать внимание и на локальное сопротивление при циркуляции воздуха. Оно может возникать из-за наличия сеток, решеток, отводов и других особенностей конструкции
Правильный расчет параметров вентиляционных труб позволит спроектировать и построить эффективную систему, которая даст возможность контролировать уровень влажности в помещениях и обеспечит комфортные условия для проживания.
В статье приведена адаптированная методика расчёта автономной системы приточно-вытяжной вентиляции на примере 3-х комнатной квартиры. Вы узнаете о том, как вычислить пиковые значения пропускной способности и узнаете, как правильно подобрать оборудование исходя из потребностей квартиры.
Как и любая работа, связанная с установкой инженерного оборудования, монтаж вентиляции состоит из нескольких этапов. Рассмотрим их на примере трехкомнатной квартиры.
Алгоритм выполнения расчетов
При проектировании, настройке или модификации уже действующей вентиляционной системы обязательно выполняются расчеты воздуховода. Это необходимо для того, чтобы правильно определить его параметры с учетом оптимальных характеристик производительности и шума в актуальных условиях.
При выполнении расчетов большое значение имеют результаты замеров расхода и скорости движения воздуха в воздушном канале.
Расход воздуха – объем воздушной массы, поступающий в систему вентиляции за единицу времени. Как правило, этот показатель измеряется в м³/ч.
Скорость движения – величина, которая показывает, насколько быстро воздух перемещается в системе вентиляции. Этот показатель измеряется в м/с.
Если известны эти два показателя, можно рассчитать площадь круглых и прямоугольных сечений, а также давление, необходимое для преодоления локального сопротивления или трения.
Составляя схему, нужно выбрать угол зрения с того фасада здания, который расположен в нижней части планировки. Воздуховоды отображаются сплошными толстыми линиями
Чаще всего используется следующий алгоритм проведения вычислений:
- Составление аксонометрической схемы, в которой перечисляются все элементы.
- На базе этой схемы рассчитывается длина каждого канала.
- Измеряется расход воздуха.
- Определяется скорость потока и давление на каждом участке системы.
- Выполняется расчет потерь на трение.
- С использованием нужного коэффициента выполняется расчет потерь давления при преодолении локального сопротивления.
При выполнении расчетов на каждом участке сети воздухораспределения получаются разные результаты. Все данные нужно уравнять посредством диафрагм с веткой наибольшего сопротивления.
Вычисление площади сечения и диаметра
Правильный расчет площади круглых и прямоугольных сечений очень важен. Неподходящий размер сечения не позволит обеспечить нужный воздушный баланс.
Слишком большой воздуховод займет много места и уменьшит эффективную площадь помещения. Если выбрать слишком маленький размер каналов, будут появляться сквозняки, так как увеличится давление потока.
Для того, чтобы рассчитать необходимую площадь сечения (S), нужно знать значения расхода и скорости движения воздуха.
Для вычислений используется следующая формула:
S = L/3600*V,
при этом L – расход воздуха (м³/ч), а V – его скорость (м/с);
Используя следующую формулу, можно посчитать диаметр воздуховода (D):
D = 1000*√(4*S/π), где
S – площадь сечения (м²);
π – 3,14.
Если планируется установка прямоугольных, а не круглых воздуховодов, вместо диаметра определяют необходимую длину/ширину воздушного канала.
Все полученные значения сопоставляют со стандартами ГОСТ и выбирают изделия, наиболее близкие по диаметру или площади сечения
При выборе такого воздуховода в расчет берется примерное сечение. Используется принцип a*b ≈ S, где a – длина, b – ширина, а S – площадь сечения.
Согласно нормативам, соотношение ширины и длины не должно быть выше 1:3. Также следует пользоваться таблицей типовых размеров, предоставляемой заводом-изготовителем.
Чаще всего встречаются такие размеры прямоугольных каналов: минимальные габариты – 0,1 м х 0,15 м, максимальные – 2 м х 2 м. Преимущество круглых воздуховодов в том, что они отличаются меньшим сопротивлением и, соответственно, создают меньше шума при работе.
Расчет потери давления на сопротивление
По мере продвижения воздуха по магистрали создается сопротивление. Для его преодоления вентилятор приточной установки создает давление, которое измеряют в Паскалях (Па).
Потерю давления можно снизить, увеличив сечение воздуховода. При этом может быть обеспечена примерно одинаковая скорость потока в сети
Для того, чтобы подобрать подходящую приточную установку с вентилятором нужной производительности, необходимо рассчитать потерю давления на преодоление локального сопротивления.
Применяется эта формула:
P=R*L+Ei*V2*Y/2, где
R – удельная потеря давления на трение на определенном участке воздуховода;
L – длина участка (м);
Еi – суммарный коэффициент локальной потери;
V – скорость воздуха (м/с);
Y – плотность воздуха (кг/м3).
Значения R определяются по нормативам. Также этот показатель можно рассчитать.
Если сечение воздуховода круглое, потери давления на трение (R) рассчитываются следующим образом:
R = (X*D/В) * (V*V*Y)/2g, где
X – коэфф. сопротивления трения;
L – длина (м);
D – диаметр (м);
V – скорость воздуха (м/с), а Y – его плотность (кг/ м³);
g – 9,8 м/с².
Если же сечение не круглое, а прямоугольное, в формулу необходимо подставить альтернативный диаметр, равный D = 2АВ/(А + В), где А и В – стороны.
Методика расчета
При общеобменной вентиляции потребный
воздухообмен определяют из условия
удаления избыточной теплоты и разбавления
вредных выделений свежим воздухом до
допустимых концентраций . Предельно
допустимые концентрации вредных веществ
в воздухе рабочей зоны устанавливают
по ГОСТ 12.1.005-88.
2.1.Расчетное значение температуры
приточного воздуха зависит от
географического расположения предприятия
принимают равной 22,3 °С.
Температуру воздуха в рабочей зоне
принимают на 3…5 °С выше расчетной
температуры наружного воздуха. Плотность
воздуха, кг/м3, поступающего в
помещение,
.(1)
Избыточное количество теплоты, подлежащей
удалению из производственного помещения,
определяют по тепловому балансу:
,(2)
где
К основным источникам тепловыделений
в производственных помещениях
относятся:
горячие поверхности оборудования
(печи, сушильные камеры, трубопроводы
и др.);оборудование с приводом от электродвигателей;
солнечная радиация;
персонал, работающий в помещении;
различные остывающие массы (металл,
вода и др.).
Поскольку перепад температур воздуха
внутри и снаружи здания в теплый
период года незначительный (3…5 °С), то
при расчете воздухообмена по избытку
тепловыделений потери теплоты через
конструкции зданий можно не учитывать.
При этом некоторое увеличение воздухообмена
благоприятно влияет на условия труда
работающих в наиболее жаркие дни теплого
периода года.
С учетом
изложенного формула (2) принимает
следующий вид:
.(3)
В настоящем расчетном задании избыточное
количество теплоты определяется
только с учетом тепловыделений
электрооборудования и работающего
персонала:
,(4)
где
Теплота, выделяемая электродвигателями
оборудования,
,(5)
где
β — коэффициент, учитывающий загрузку
оборудования, одновременность его
работы, режим
работы; β = 0,25…0,35; N—общая
установочная мощность электродвигателей,
кВт.
Теплота, выделяемая работающим персоналом,
(6)
где n—число работающих, чел.; Кр—теплота, выделяемая одним человеком,КДж/ч (принимается
равной при легкой работе 300 кДж/ч; при
работе средней тяжести 400 кДж/ч;
при тяжелой работе 500 кДж/ч).
2.2.Расход
приточного воздуха, м3/ч, необходимый
для отвода избыточной теплоты,
(7)
где
Qиз6
— избыточное количество теплоты, кДж/ч;с —
теплоемкость воздуха, Дж/(кг-К);с=1,2кДж/(кг·К); ρ —плотность воздуха,
кг/м3;tуд— температура воздуха, удаляемого
из помещения, принимается равной
температуре воздуха врабочей
зоне, °С; tпр
— температура приточного воздуха, °С.
Расход приточного воздуха, м3/ч,
необходимый для поддержания
концентрации вредных веществ в заданных
пределах,
,(8)
где
G—
количество выделяемых вредных веществ,
мг/ч (см. таблицу); qуд—концентрация
вредных веществ в удаляемом воздухе,
которая не должна превышать предельно
допустимую, мг/м3, т. е.qудqпдк;qпр—концентрация
вредных веществ в приточном воздухе,
мг/м3.
(9)
2.3.Определение
потребного воздухообмена.
Для определения потребного воздухообменаLнеобходимо
сравнить величиныL1иL2, рассчитанные
по формулам (1) и (8), и выбрать наибольшую
из них.
2.4. По
номограмме (рис. 1) подобрать вентилятор
ЦАГИ серия Ц4-70 № 6 и определить его
основные характеристики: окружная
скорость колеса ω,м/с,
число оборотов n,
об/мин, КПД η,
полное давление H
кгс/м2 (
мм вод ст)
2.5.Кратность воздухообмена, 1/ч,
(10)
где L—потребный воздухообмен, м3/ч;Vc—внутренний
свободный объем помещения, м3.
Кратность воздухообмена помещений
обычно составляет от 1 до 10 (большие
значения для помещений со значительными
выделениями теплоты, вредных веществ
или небольших по объему).
Для машино- и приборостроительных цехов
рекомендуемая кратность воздухообмена
составляет 1…3, для литейных,
кузнечно-прессовых, термических цехов,
химических производств — 3…10.
Связь характеристик вентиляционных систем с уровнем шума
Процесс замера скорости воздуха.
В эмпирических формулах расчета уровня шума вентиляционной сети фигурируют расход воздуха, поперечные размеры воздуховода, безразмерные величины, характеризующие качество звукоизоляции помещения, а также значения сопротивления для ровных и изогнутых участков труб.
Уменьшение аэродинамических потерь воздуховода, расширение проходного сечения и установка вентилятора с меньшим расходом воздуха позволят сберечь электроэнергию. Потребляемая вентилятором энергия напрямую зависит от величины расхода воздуха и напора. Он, в свою очередь, прямо пропорционален скорости воздуха в воздуховоде.
Повысив скорость воздуха, можно уменьшить диаметр сечения воздуховода и сэкономить на покупке составных частей и монтаже. Повышение скорости достигается установкой высоконапорных вентиляторов. Имея ту же производительность, что и низконапорные, они будут расходовать больше электроэнергии и их эксплуатация обойдется дороже.
Таблица расчетов сечения прямоугольных воздуховодов.
- Расход воздуха. Имея установленную конфигурацию и размеры системы воздуховодов, можно снизить уровень шума за счет уменьшения расхода.
- Площадь сечения воздуховода. Ее увеличение дает более слабый шум на выходе из вентиляционных отверстий.
- Коэффициент аэродинамического сопротивления. Определяется совершенством формы переходных участков трубопровода. Применение обтекаемых и плавных отводов, диффузоров и дросселей может помочь в достижении низкого шума при эксплуатации.
- Все вышеперечисленные факторы могут быть учтены в зависимости от конкретной ситуации и задач, которые ставит проектировщик. Взвешенно и критически подходя к подбору всех параметров, удастся найти сбалансированное решение для конструкции будущей вентиляции.
3 Кратность обмена в расчётах вентиляции
Для расчётов пользуются таблицей кратности воздухообмена для производственных помещений. Приведённая норма умножается на площадь и высоту конкретного строения. В промышленных цехах по СНиП установлено поступление свежего воздуха на 1 человека не меньше 30 м3/ч, если объём < 20 м³. В противном случае — норма ≥20 м3/час. Для помещений без естественного проветривания на 1 рабочего полагается ≥60 м3/час.
Порядок определения воздухообмена в расчёте вентиляции следующий:
- из таблицы кратности производятся выборки для каждого блока: отдельно приток и вытяжка;
- если приводится минимальное значение оборота газовой среды, принимается эта цифра;
- составляется уравнение баланса: Lприточки=Lвытяжки; если проверка показала невыполнение этого условия, в помещениях недостающей стороны воздухооборот увеличивают.