Теплопроводность пенопласта
Основной характеристикой, благодаря которой пенополистирол получил широкое признание в качестве материала для утепления №1, является сверхнизкая теплопроводность пенопласта. Относительно небольшая прочность материала с лихвой компенсируется такими преимуществами, как стойкость к воздействию большинства агрессивных соединений, небольшой вес, нетоксичность и безопасность при работе. Хорошие теплоизолирующие свойства пенопласта дают возможность обустроить утепление дома по относительно небольшой цене, при этом долговечность такого утепления рассчитана на срок не менее 25 лет службы.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 – 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 – 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 – 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 – 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 – 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 – 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 – 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | |||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей
Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1
Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов
Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)
Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичей
Таблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3
Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесины
Таблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов
Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу
Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины. Таблица проводимости тепла воздушных прослоек
Таблица проводимости тепла воздушных прослоек
Применение коэффициента теплопроводности в строительстве
В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.
В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.
Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.
Какой же строительный материал самый теплый?
В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.
Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:
А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).
Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.
Как выполнить подсчеты на онлайн калькуляторе
Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.
В сервис занесены сведения по каждой отдельной климатической зоне:
- t воздуха;
- средняя температура в отопительный сезон;
- длительность отопительного сезона;
- влажность воздуха.
Температура и влажность внутри помещения – одинаковы для каждого региона
Сведения, одинаковые для всех регионов:
- температура и влажность воздуха внутри помещения;
- коэффициенты теплоотдачи внутренних, наружных поверхностей;
- перепад температур.
Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:
Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.
Материалы из бетона с добавлением пористых заполнителей
Коэффициент теплопроводности строительных материалов – таблицы
Коэффициент теплопроводности вакуума
Интересно рассмотреть с этой точки зрения коэффициент теплопроводности вакуума. Он близок нулю — причем, чем вакуум глубже вакуум, тем его теплопроводность ближе к нулевой. Почему? Дело в том, что в вакууме крайне низкая концентрация материальных частиц, которые способны переносить тепло. Но тепло в вакууме всё же передаётся — при помощи излучения. Так, например, чтобы довести до минимума теплопотери, термос делают с двойными стенками, откачивая между ними воздух. А также делают «серебрение». На том же качестве, что зеркальная поверхность отражает излучение лучше, основаны свойства таких материалов, как фольгированный пенофол и другие подобные изоляционные материалы.
Ниже смотрим познавательные видеоматериалы для более полного представления такого физического понятия, как теплопроводность, на конкретных примерах.
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания
При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно. Во время эксплуатации будут существенно экономиться денежные средства на отопление
Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи
Зрительно это можно увидеть на фотографии в начале статьи.
Сравнение утеплителей по теплопроводности
Показатели для разных марок пенополистирола
Последовательность действий
Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.
Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.
4.8 Округление расчетных значений теплопроводности
Расчетные значения теплопроводности материала округляют
согласно приведенным ниже правилам:
для теплопроводности l,
Вт/(м · К):
— если l ≤
0,08, то заявленное значение округляют до ближайшего большего числа с точностью
до 0,001 Вт/(м · К);
— если 0,08 < l ≤
0,20, то заявленное значение округляют до ближайшего большего значения с
точностью до 0,005 Вт/(м · К);
— если 0,20 < l ≤
2,00, то заявленное значение округляют до ближайшего большего числа с точностью
до 0,01 Вт/(м · К);
— если 2,00 < l,
то заявленное значение округляют до ближайшего большего значения с точностью до
0,1 Вт/(мК).
Приложение А
(обязательное)
Таблица
А.1
Материалы (конструкции) | Эксплуатационная влажность | |
А | Б | |
1 Пенополистирол | 2 | 10 |
2 Пенополистирол экструзионный | 2 | 3 |
3 Пенополиуретан | 2 | 5 |
4 Плиты из | 5 | 20 |
5 Перлитопластбетон | 2 | 3 |
6 Теплоизоляционные изделия | 5 | 15 |
7 Теплоизоляционные изделия | ||
8 Маты и плиты из | 2 | 5 |
9 Пеностекло или газостекло | 1 | 2 |
10 Плиты древесно-волокнистые | 10 | 12 |
11 Плиты фибролитовые и | 10 | 15 |
12 Плиты камышитовые | 10 | 15 |
13 Плиты торфяные | 15 | 20 |
14 Пакля | 7 | 12 |
15 Плиты на основе гипса | 4 | 6 |
16 Листы гипсовые | 4 | 6 |
17 Изделия из вспученного | 1 | 2 |
18 Гравий керамзитовый | 2 | 3 |
19 Гравий шунгизитовый | 2 | 4 |
20 Щебень из доменного | 2 | 3 |
21 Щебень шлакопемзовый и | 2 | 3 |
22 Щебень и песок из | 5 | 10 |
23 Вермикулит вспученный | 1 | 3 |
24 Песок для строительных | 1 | 2 |
25 Цементно-шлаковый | 2 | 4 |
26 Цементно-перлитовый | 7 | 12 |
27 Гипсоперлитовый раствор | 10 | 15 |
28 Поризованный | 6 | 10 |
29 Туфобетон | 7 | 10 |
30 Пемзобетон | 4 | 6 |
31 Бетон на вулканическом | 7 | 10 |
32 Керамзитобетон на | 5 | 10 |
33 Керамзитобетон на | 4 | 8 |
34 Керамзитобетон на | 9 | 13 |
35 Шунгизитобетон | 4 | 7 |
36 Перлитобетон | 10 | 15 |
37 Шлакопемзобетон | 5 | 8 |
38 Шлакопемзопено- и шлакопемзогазобетон | 8 | 11 |
39 Бетон на доменных | 5 | 8 |
40 Аглопоритобетон и бетон | 5 | 8 |
41 Бетон на зольном гравии | 5 | 8 |
42 Вермикулитобетон | 8 | 13 |
43 Полистиролбетон | 4 | 8 |
44 Газо- и пенобетон, газо- | 8 | 12 |
45 Газо- и пенозолобетон | 15 | 22 |
46 Кирпичная кладка из | 1 | 2 |
47 Кирпичная кладка из сплошного | 1,5 | 3 |
48 Кирпичная кладка из | 2 | 4 |
49 Кирпичная кладка из сплошного | 2 | 4 |
50 Кирпичная кладка из | 2 | 4 |
51 Кирпичная кладка из | 1,5 | 3 |
52 Кирпичная кладка из | 1 | 2 |
53 Кирпичная кладка из | 2 | 4 |
54 Древесина | 15 | 20 |
55 Фанера клееная | 10 | 13 |
56 Картон облицовочный | 5 | 10 |
57 Картон строительный | 6 | 12 |
58 Железобетон | 2 | 3 |
59 Бетон на гравии или | 2 | 3 |
60 Раствор | 2 | 4 |
61 Раствор сложный (песок, | 2 | 4 |
62 Раствор | 2 | 4 |
63 Гранит, гнейс и базальт | ||
64 Мрамор | ||
65 Известняк | 2 | 3 |
66 Туф | 3 | 5 |
67 Листы асбестоцементные | 2 | 3 |
Ключевые слова:
строительные материалы и изделия, теплофизические характеристики, расчетные
значения, теплопроводность, паропроницаемость
Теплотехнический расчет стен из различных материалов
Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.
Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа
Второе становится особенно актуальным при отсутствии подведенного к дому газа
Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.
Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).
По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.
Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.
В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.
Расчет необходимой толщины однослойной стены
В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.
Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).
Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).
№ п/п | Материал стены | Теплопроводность, Вт/м·°C | Толщина стены, мм | |
Требуемая | Допустимая | |||
1 | Газобетонный блок | 0,14 | 444 | 270 |
2 | Керамзитобетонный блок | 0,55 | 1745 | 1062 |
3 | Керамический блок | 0,16 | 508 | 309 |
4 | Керамический блок (тёплый) | 0,12 | 381 | 232 |
5 | Кирпич (силикатный) | 0,70 | 2221 | 1352 |
Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.
Расчет сопротивления теплопередачи стены
Ниже представлены значения сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен из газобетона, керамзитобетона, керамических блоков, кирпича, с отделкой штукатуркой и облицовочным кирпичом, утеплением и без. По цветной полосе можно сравнить между собой эти варианты. Полоса зеленого цвета означает, что стена соответствует нормативным требованиям по теплозащите, желтого — стена соответствует допустимым требованиям, красного — стена не соответствует требованиям
Стена из газобетонного блока
1 | Газобетонный блок D600 (400 мм) | 2,89 Вт/м·°C |
2 | Газобетонный блок D600 (300 мм) + утеплитель (100 мм) | 4,59 Вт/м·°C |
3 | Газобетонный блок D600 (400 мм) + утеплитель (100 мм) | 5,26 Вт/м·°C |
4 | Газобетонный блок D600 (300 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 2,20 Вт/м·°C |
5 | Газобетонный блок D600 (400 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 2,88 Вт/м·°C |
Стена из керамзитобетонного блока
1 | Керамзитобетонный блок (400 мм) + утеплитель (100 мм) | 3,24 Вт/м·°C |
2 | Керамзитобетонный блок (400 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 1,38 Вт/м·°C |
3 | Керамзитобетонный блок (400 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 3,21 Вт/м·°C |
Стена из керамического блока
1 | Керамический блок (510 мм) | 3,20 Вт/м·°C |
2 | Керамический блок тёплый (380 мм) | 3,18 Вт/м·°C |
3 | Керамический блок (510 мм) + утеплитель (100 мм) | 4,81 Вт/м·°C |
4 | Керамический блок (380 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 2,62 Вт/м·°C |
Стена из силикатного кирпича
1 | Кирпич (380 мм) + утеплитель (100 мм) | 3,07 Вт/м·°C |
2 | Кирпич (510 мм) + замкнутый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 1,38 Вт/м·°C |
3 | Кирпич (380 мм) + утеплитель (100 мм) + вентилируемый воздушный зазор (30 мм) + облицовочный кирпич (120 мм) | 3,05 Вт/м·°C |
описание различных пород, необходимость таблицы коэффициентов теплопроводности
Древесина — экологически чистый и практичный материал. Дерево активно применяется для внутренней отделки помещений. Материал также используется в строительстве загородных домов и заведений для туристов, в которых большую роль играет экологичность здания
При строительстве важно учесть теплопроводность дерева и многие другие параметры. Внутренняя отделка тоже требует внимания к характеристикам, ведь породы по-разному реагируют на тепло и влагу
Разновидности и использование древесины
В строительстве применяются разнообразные породы древесины, которые принято разделять на хвойные и лиственные. К хвойным относятся такие виды:
Сосна. Прочный и практичный материал для выполнения строительных работ. В нем собрано большое количество смолы, за счет чего он справляется с излишней влагой, при этом не поддается коррозии при сушке.
Ель и пихта. Довольно прочные, но сучковатые материалы. Имеют приятый оттенок и незначительное количество смолы
При строительстве применяются как материал для элементов второстепенной важности.
Кедр. Невзирая на то, что материал мягкий, он довольно прочный.
Лиственные породы делятся на мягкие и твердые. Это такие виды:
- Дуб. Высококачественный материал, обладающей высокой прочностью и надежностью. У дуба натуральный и приятный для глаза цвет. Как правило, он применяется для изготовления мебели, при возведении лестничного марша. Наиболее роскошно выглядит настоящий мореный дуб (выдержанный в воде около двух лет).
- Береза. Не столь прочный материал, зато однородный, за счет чего имеет максимально четко выраженную структуру. Из этого вида древесины получается качественная фанера, которая легко окрашивается и полируется.
- Осина. Слишком мягкий, но при этом практически не имеющий сучков вид древесины. Легко поддается обработке, но мелкие детали из осины делать не стоит.
- Липа. Широко применяется в производстве мебели. Прекрасно сохраняет свой первозданный вид даже после сушки. Липа устойчива к влаге.
- Клен. Довольно практичный материал, но весьма быстро рушится под воздействием влаги и вредителей. Неплохо красится, обрабатывается и проклеивается. Широко применяется как в строительстве, так и в изготовлении мебели.
- К лиственному типу также относится красное дерево. Красивый, дорогой и прочный материал. Чаще всего используется для элитного мебельного производства.
Достоинства материала
Строительство с использованием древесины имеет свои преимущества и недостатки. Главными плюсами при выборе такого материала будут:
- Экологичность. Самый весомый аргумент в пользу древесины — экологическая чистота. Некоторые современные материалы могут выделять пары тяжелых металлов и прочих химических элементов, что пагубно повлияет на здоровье жильцов дома.
- Ремонтопригодность. Части, сделанные из древесины, будет довольно легко отремонтировать в случае поломки или износа.
- Прочность и устойчивость ко многим внешним факторам, что делает долгим срок службы изделий из древесины. При правильной обработке этот материал будет безотказно служить долгие годы.
- Простота обработки.
- Плохая теплопроводность.
- Хорошие звукоизоляционные свойства.
Довольно обширный список. При этом маленькое число недостатков:
- Сильная зависимость свойств материала от того, в каких условиях росло дерево. Выбрать из-за этого качественный экземпляр бывает трудно.
- Изменения размеров из-за воздействия влажности и сухости. Но этот недостаток легко поправим обработкой.
- Легкая воспламеняемость.
Влияние теплопроводности
От коэффициента теплопроводности древесины напрямую зависит ее способность сохранять температуру в помещении. Лидирующую позицию по сбережению тепла занимает кедр. Немного отстают ель, лиственница и другие сосновые породы. Все зависит напрямую от размера бревна (его диаметра), влажности материала, подгонки и утепления стыков.
Строение из сосны толщиной всего в 10 см можно сравнить со стеной из кирпича шириной в 58 см или железобетонной — 113 см. Правильно возведенный из дерева дом будет довольно компактным и теплым. Поэтому при строительстве нужно учитывать таблицу теплопроводности дерева.
Максимально тяжелое хвойное дерево лиственница — победитель сосны по теплопроводности. Она имеет более низкий коэффициент.
Сосна — наиболее распространенное и часто применяемое для строительства дерево. Более того, с финансовой стороны вопроса это еще и максимально бюджетный вариант. Сосна легко поддается обработке, способна украсить дом или баню своим внешним видом.
kaminguru.com
Теплопроводность – что это такое
Теплопроводностью называется способность всех видов газов, жидкости или материалов передавать тепло. Это значит, что когда объект нагревается с одной стороны, он трансформируется в теплопроводник, т.к. передает свою энергию дальше. При охлаждении процесс происходит также.
Например, если во время приготовления пищи перемешивать продукты деревянной лопаткой, то изменений в температуре не последует. Но, если для этих целей использовать кухонную утварь из металла, то она быстро нагреется так, что держать ее станет в руке невозможно. Таких примеров теплопроводности привести можно немало.
Объяснение этого с точки зрения физики: тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. Причем ей требуется время, чтобы пройти через стройматериал. Чем больше его нужно, тем ниже скорость передачи тепла.
Внимание!
Если температура по обе стороны используемого материала одинаковая, то переход тепловой энергии не состоится.
Так,
- теплопроводность кирпича и стали составляет 0,56 и 58Вт/м●К соответственно;
- древесины – 0,09-0,1;
- песка – 0,35
Можно заметить, что не все материалы обладают одинаковой теплоэффективностью, это зависит от факторов:
- Пористая структура свидетельствует о ее неоднородности и наличии воздуха в порах.
- Структура пор – небольшие размеры и их замкнутость приводит к снижению теплового потока.
- Плотность – чем она выше, тем больше коэффициент проводимости тепла.
- Влажность – негативный фактор, который повышает скорость теплопередачи. Поэтому надо качественно произвести гидроизоляцию сооружения, правильно сделать вентиляцию и использовать влагоустойчивые стройматериалы.
Формула теплопроводности создана с учетом воздействия температуры на это свойство материала. Выглядит она так:
λ=λ0●(1+b●t), где
- λ0 — коэффициент теплопроводности при 0°С, измеряется который в Вт/м●℃;
- b – справочная величина температуры;
- t – непосредственно температура.
Коэффициент теплопроводности
Зачастую в паспорте стройматериалов указан коэффициент теплопроводности – единица измерения которого Вт/(м●℃). Она характеризует любой материал как проводник тепла. В формуле она определяется греческой буквой λ.
Внимание!
Часто в формулах можно увидеть не градусы по Цельсию, а по Кельвину, обозначающиеся как K. Суть от этого не меняется.
Данный коэффициент демонстрирует способность используемого материала передавать тепло на определенную дистанцию за время. При этом показатель определяет именно сырье, а его размеры значения не имеют.
Рассчитать коэффициент теплообмена можно для материала строительного и иного назначения. Например, коэффициент теплоотдачи стали использовать как теплоотвод или теплообменник. Но для больше части стройматериалов ситуация обратная – чем меньше этот показатель для стен, тем меньше тепла здание потеряет зимой.
Сопротивление теплопередаче
Коэффициент теплопередачи – это показатель, характеризующий используемый материал. Но, как показывает практика, лучше оперировать какой-то величиной, которая будет описывать теплопроводные способности определенного сооружения. Иными словами, учитываться должны особенности его строения и параметров.
Термическое сопротивление – это и есть такая величина. Можно считать, что она обратная коэффициенту теплопроводности и учитывающая толщину стройматериала. Для этого показателя существует следующее обозначение – R. Формула при этом выглядит следующим образом:
R = h/λ, где
- R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²•℃/Вт;
- h — толщина этого слоя в метрах;
- λ — коэффициент теплопроводности материала конструкции, Вт/(м•℃).
Часто стены сооружают многослойными, один слой при этом – утеплитель с низким коэффициентом теплопроводности. Благодаря такому подходу нужный показатель повышается. Это связано с тем, что надо прибавить все слои сопротивления теплопередаче, из которых состоит ограждающая конструкция. Не стоит забывать и о суммировании приграничных слоев воздуха внутри и снаружи сооружения.
Допустимые значения
Выполняя теплотехнический расчет наружной стены, учитывают также и регион, в котором будет располагаться дом:
- Для южных регионов с теплыми зимами и небольшими перепадами температур можно возводить стены небольшой толщины из материалов со средней степенью теплопроводности – керамический и глиняный обожженный одинарный и двойной, кирпич, пено- и газобетон большой плотности. Толщина стен для таких регионов может быть не более 20 см.
- В то же самое время для северных регионов целесообразнее и экономически выгоднее строить ограждающие стеновые конструкции средней и большой толщины из материалов с большим термическим сопротивлением – оцилиндрованное бревно, газо- и пенобетон средней плотности. Для таких условий возводят стеновые конструкции толщиной до 50–60 см.
- Для регионов с умеренным климатом и чередующимися по температурному режиму зимами подходят стены из материалов с высоким и средним значением термического сопротивления – газо- и пенобетон, брус, оцилиндрованное бревно среднего диаметра. В таких условиях толщина стеновых ограждающих конструкций с учетом утеплителей составляет не более 40–45 см.