Калькулятор
Для упрощения вычислений удобно пользоваться онлайн-калькулятором. Алгоритм программы позволяет вычислить энергопотери трансформатора без сложных формул. Но полученные результаты следует рассматривать как ориентировочные. Для ввода используют следующие данные:
- из техпаспорта прибора берут величину Sном (кВА);
- вводят значение Ркз – справочный (паспортный) параметр (кВт);
- выбирают Pхх в технической документации прибора (кВт);
- указывают нагрузочный ток Iхх в процентном выражении (%);
- обозначают напряжение Uкз – справочная информация (%);
- вводят коэффициент загрузки K в относительных единицах;
- указывают время эксплуатации прибора с максимальной загрузкой Тм (час);
- из фактического режима эксплуатации оборудования берут годовое число часов работы агрегата Тг (час);
- средний тариф Со на активную электроэнергию в расчетном периоде (руб/кВт*час).
После введения данных программа рассчитывает необходимые значения.
Поскольку энергопотери приводят к увеличению расхода материалов и средств, они вызывают удорожание электроэнергии. Сведение убыли непродуктивных энергозатрат силовых агрегатов к минимуму позволяет конструировать устройства с максимальным коэффициентом полезного действия. Применяя на практике методы расчета потерь активной мощности трансформаторных узлов, можно определить экономичность функционирования оборудования и необходимость установки в замкнутых цепях компенсирующей аппаратуры.
Сколько же электроэнергии могут потреблять бытовые электроприборы.
1. Компьютер
Расчеты, которые будут показывать сколько тратит компьютер электроэнергии, будут проводиться приблизительно, так как все зависит от мощности блока питания вашего компьютера и конкретной работы, которую выполняет компьютер в данный момент.
Например, при мощности блока компьютера от 350 до 550 Ватт, он вряд ли будет потреблять всю мощность даже при режиме полной загруженности. Также необходимо учесть монитор — от 60 до 100 Ватт. В сумме, при среднестатистическом блоке питания компьютера 450 Ватт и монитора 100 Ватт, получится 550 Ватт или 0,55 кВт электроэнергии в час. Эта цифра сильно завышена. Для приблизительного расчета можно взять максимальное значение — 0,5 квт/ч.Таким образом при использовании компьютера 4 часа в день получается 60 квт/ч в месяц. (0,5*4*30). Теперь от этих цифр можно отталкиваться, например, при использовании компьютера 8 часов в день получаем 120 квт/ч. в месяц.
2. Холодильник
В техническом паспорте на холодильник указывается потребление электроэнергии в год. В основном эта цифра находится в пределах от 230 до 450 квт/ч. Поделив это значение на 12, получим от 20 до 38 квт/ч потребления электроэнергии в месяц. Данный показатель применим лишь для идеальных условий. Количество потребляемой мощности зависит от объема холодильника и от количества находящихся в нем продуктов. Также необходимо учесть и внешние условия, зависящие от времени года.
3. Телевизор
Телевизоры бывают разные. В среднем, для расчета, будем брать 100 вт/ч. Например, при просмотре телевизора вы тратите 5 часов в день — 0,5 квт/ч. В месяц — около 15 кВт/ч. ЖК-телевизоры с большой диагональю экрана потребляют 200-50 Вт в час. Также важную роль играет яркость экрана. Соответственно, число потраченных киловатт- часов в месяц спокойно умножаем на 1,5. Получается около 23 квт/ч, но это среднее значение, не стоит про это забывать. Плазменные телевизоры с большой диагональю потребляют от 300 до 500 ватт в час. Если у вас в квартире стоит несколько разных телевизоров — суммируйте значения.
4. Стиральная машина
Чтобы, определить сколько электроэнергии потребляет стиральная машинка, необходимо знать режим стирки, массы белья и типа материала. В среднем, мощность будет колеблется от 2 до 2,5 квт/ч. Однако, редко когда машины потребляют такое количество электроэнергии. Для расчетов можно взять от 1 до 1,5 квт/ч. При стирке 2 раза в неделю по 2 часа, получаем от 16 до 24 квт/ч.
5. Чайник и утюг
Больше всего в квартире энергию потребляют — чайник и утюг. Работая минимальное количество времени, они потребляют такое же количество электроэнергии, как некоторые приборы в месяц. При мощности чайника от 1,5 до 2,5 квт/ч, пользуясь им 4 раза в день по 5 минут, получим от 20 до 25 квт/ч в месяц. С утюгом аналогичная история. Мощность, у него примерно такая же, как и у чайника, если гладить 3 раза в неделю по 1 часу, то получится от 25 до 30 квт/ч в месяц.
Здесь перечислены не все приборы потребляющие электроэнергию, к ним еще можно отнести микровольновые печи, пылесосы, зарядные устройства телефонов и ноутбуки. Также нужно учесть лампы накаливания, которые в зависимости от их количества, мощности и времени работы, могут потреблять от 50 до 100 квт/ч электроэнергии в месяц.
В итоге, путем таких вычислений, получаем приблизительный расход на электроэнергию будет колебаться от 200 до 300 квт/ч в месяц.
Многие слышали, что возросшая плата за электроэнергию — целиком и полностью ваша вина. То вы много сидите за компьютером, то слишком долго смотрите телевизор, также слишком часто гладите и стираете. Но давайте, попробуем разобраться, сколько же электроэнергии могут потреблять бытовые электроприборы.
Расчет затрат на отопление
Хорошая отопительная система требует достаточно больших финансовых вложений. Основные расходы связаны с:
- Оборудование отопительной системы. В него входят котел, насос, радиаторы и материал для разводки.
- Установка обогревательной системы.
- Затраты на топливо. Количество потраченных денег зависит от выбранного вами топлива.
- Поддержка оборудования в рабочем состояние.
При расчете затрат нужно учитывать удельную теплоту сгорания. Рассчитайте путем деления теплопотери за сезон на теплотворность сырьевого продукта и получите количество использованного топлива. Умножьте на стоимость за единицу измерения.
Еще один метод подсчета — это расход кВт в час. На дом, площадью 120 м2 потребляется 12 кВт теплоэнергии. В месяц выходит 8640 кВт. Способ подходит для пользователей газа и электричества
Современные отопительные элементы
Крайне редко можно сегодня увидеть дом, в котором отопление выполняется исключительно воздушными источниками. К ним можно отнести электрические отопительные приборы: тепловентиляторы, радиаторы, УФО, тепловые пушки, электрические камины, печи. Рациональнее всего использовать их в качестве вспомогательных элементов при стабильно работающей основной отопительной системе. Причина их «второстепенности» — достаточно высокая себестоимость электроэнергии.
Основные элементы системы отопления
При планировании отопительной системы любого типа важно знать, что есть общепринятые рекомендации, касающиеся удельной мощности используемого нагревательного котла. В частности, для северных регионов страны она составляет примерно 1,5 – 2,0 кВт, в центральных — 1,2 – 1,5 кВт, в южных — 0,7 – 0,9 кВт
При этом перед тем, как рассчитать систему отопления, для вычисления оптимальной мощности котла следует воспользоваться формулой:
W кот. = S*W / 10.
Расчет системы отопления зданий, а именно – мощности котла – важный этап при планировании создания отопительной системы
При этом важно обратить особенное внимание на следующие параметры:
- суммарная площадь всех помещений, которые будут подключены к отопительной системе – S;
- рекомендованная удельная мощность котла (параметр, зависящий от региона).
Допустим, что необходимо рассчитать емкость системы отопления и мощность котла для дома, в котором суммарная площадь помещений, которые необходимо отапливать S = 100 м2. При этом возьмем рекомендованную удельную мощность для центральных регионов страны и подставим данные в формулу. Получим:
W кот. = 100*1,2/10=12 кВт.
2.2 Определение нормируемых эксплуатационных тепловых потерь
Эксплуатационные
тепловые потери в водяных ТС состоят из двух видов потерь — через
теплоизоляционные конструкции и с утечками сетевой воды.
2.2.1
Определение нормируемых эксплуатационных тепловых потерь через
теплоизоляционные конструкции осуществляется для ТС на балансе энергоснабжающей
организации в виде часовых (при среднегодовых условиях работы ТС) [МВт
(Гкал/ч)] и среднемесячных [МВт (Гкал/ч)] тепловых потерь по участкам ТС (см.
п. 3.1.6 РД
153-34.0-20.523-98 ) в соответствии с материальной характеристикой (см.
таблицу настоящих
Рекомендаций), а также месячных и годовых потерь в целом по ТС на
балансе:
— тепловые
потери через изоляцию определяются раздельно по видам прокладки (подземная и
надземная) вследствие различных алгоритмов их зависимости от температур сетевой
воды и окружающей среды (грунта или воздуха) (см. пп. 3.1.6 и 3.1.8 РД
153-34.0-20.523-98 );
— нормируемые
часовые среднегодовые потери по участкам ТС в общем виде определяются формулой
(1) РД
153-34.0-20.523-98 [, ч. II
= qнKLβ
Значения
удельных (на 1 м длины) часовых тепловых потерь qн, Вт/м [ккал/(м × ч)],
по видам прокладки определяются по нормам и в зависимости от срока
ввода ТС в эксплуатацию (см. п. 3.1.7 и
таблицы П1.1 — П1.5 РД
153-34.0-20.523-98 ):
— к удельным
тепловым потерям вводятся поправочные коэффициенты К, полученные на основании
результатов испытаний или расчета согласно положениям п. 3.1.11 РД
153-34.0-20.523-98 , и β — на
дополнительные потери тепла арматурой, компенсаторами, опорами (см. п. 3.1.6 РД
153-34.0-20.523-98 );
— нормируемые
часовые тепловые потери при среднегодовых условиях работы в целом по ТС на
балансе энергопредприятия определяются путем суммирования часовых среднегодовых
потерь по участкам (по видам прокладки);
— нормируемые
часовые среднемесячные [МВт (Гкал/ч)] и месячные
тепловые потери по видам прокладки определяются путем пересчета часовых
среднегодовых тепловых потерь на среднемесячные температурные условия работы ТС
(см. таблицу настоящих
Рекомендаций) и число часов работы в данном месяце;
— составляющая
ЭХ по тепловым потерям через изоляцию строится в виде графика часовых
среднемесячных [МВт (Гкал/ч)] (см. рисунок настоящих Рекомендаций) и месячных
тепловых потерь в разрезе года раздельно по видам прокладки для тепловой сети
на балансе энергоснабжающей организации.
2.2.2
Определение нормируемых эксплуатационных тепловых потерь с потерями сетевой
воды в настоящих Рекомендациях в соответствии с РД
153-34.0-20.523-98 осуществляется только для потерь с нормируемой утечкой в виде
годовых тепловых потерь по
формуле (36) РД
153-34.0-20.523-98 (см. рисунок
данных Рекомендаций):
При этом:
— нормируемая
среднегодовая утечка сетевой воды а [м3/(ч × м3)]
принимается по РД
34.20.501-95 в размере 0,25 % среднегодового объема (емкости) ТС и
систем теплопотребления;
— среднегодовой
объем сетевой воды Vср.г (м3)
определяется исходя из объема ТС и систем теплопотребления в отопительном и
летнем периодах работы СЦТ и соответствующего числа часов работы n;
— расчет
производится в целом для ТС и подключенных систем теплопотребления на балансе
энергоснабжающей организации;
— определяются
нормируемые эксплуатационные месячные тепловые потери с утечкой сетевой воды . исходя из сезонных потерь и соответствующих
средних температур сетевой и холодной воды и числа часов работы;
— составляющая
ЭХ по потерям тепла с потерями сетевой воды строится в виде графика месячных
тепловых потерь ТС на балансе энергоснабжающей организации.
2.2.3
Энергетическая характеристика водяных ТС по показателю «тепловые потери»
определяется путем суммирования нормируемых месячных значений тепловых потерь
через тепловую изоляцию с потерями сетевой воды, а также их годовых значений.
Для оценки доли
тепловых потерь от количества переданной тепловой энергии могут быть определены
их относительные значения по месяцам и в целом за год работы ТС.
Расчет мощности отопительного котла
Котел в составе системы отопления предназначен для компенсации теплопотерь здания. А также, в случае двухконтурной системы или при оснащении котла бойлером косвенного нагрева, для согревания воды на гигиенические нужды.
Для определения мощности котла отопления необходимо рассчитать затраты тепловой энергии дома через фасадные стены и на нагрев сменяемой воздушной атмосферы внутренних помещений.
Требуются данные по теплопотерям в киловатт-часах за сутки – в случае условного дома, обсчитанного в качестве примера, это:
271,512 + 45,76 = 317,272 кВт·ч,
Где: 271,512 – суточные потери тепла внешними стенами; 45,76 – суточные теплопотери на нагрев приточного воздуха.
Соответственно, необходимая отопительная мощность котла будет:
317,272 : 24 (часа) = 13,22 кВт
Однако такой котел окажется под постоянно высокой нагрузкой, снижающей его срок службы. И в особенно морозные дни расчетной мощности котла будет недостаточно, поскольку при высоком перепаде температур между комнатной и уличной атмосферами резко возрастут теплопотери здания.
Поэтому выбирать котел по усредненному расчету затрат тепловой энергии не стоит – он с сильными морозами может и не справиться.
Рациональным будет увеличить требуемую мощность котлового оборудования на 20%:
13,22 · 0,2 + 13,22 = 15,86 кВт
Для вычисления требуемой мощности второго контура котла, греющего воду для мытья посуды, купания и т.п., нужно разделить месячное потребление тепла «канализационных» теплопотерь на число дней в месяце и на 24 часа:
493,82 : 30 : 24 = 0,68 кВт
По итогам расчетов оптимальная мощность котла для коттеджа-примера равна 15,86 кВт для отопительного контура и 0,68 кВт для нагревательного контура.
Расчет объема системы отопления
Расчет объема системы отопления необходим для определения объема расширительного бака, подбора котла отопления или определения необходимого количества теплоносителя.
Рассчитать объем системы отопления достаточно просто, для этого необходимо просуммировать внутренний объем всех элементов системы. Проблема возникает именно в определении объема внутренних элементов, для того чтобы не перечитывать ГОСТы и паспорта на приборы отопления в этой статье собраны вся необходимая информация. Она значительно упростит расчет Вашей системы отопления.
Порядок проведения расчета объема системы отопления
Если Ваша система отопления состоит из труб диаметром 80-100 мм, как часто бывает в системе отопления открытого типа, то следует перейти к следующему пункту – расчет труб. Если в вашей системе отопления применяются стандартные радиаторы, то целесообразнее начать с них.
Расчет объема теплоносителя в радиаторах отопления
По мимо того, что радиаторы отопления бывают разного типа, они еще имеют различную высоту. Для определения объема теплоносителя в радиаторах отопления удобно сначала подсчитать количество одинаковых по размеру и типу секций и умножить их на внутренний объем одной секции.
Таблица 1.Внутренний объем 1 секции радиатора отопления в литрах, в зависимости от размера и материала радиатора.
Материал радиатора отопления | Межцентровое расстояние подключения радиаторов отопления, мм | ||
300 | 350 | 500 | |
Объем, л | |||
Алюминевые | — | 0,36 | 0,44 |
Биметалические | — | 0,16 | 0,2 |
Чугунные | 1,11 | — | 1,45 |
Для упрощения расчетов данные по объему одной секции сведены в таблицу в зависимости от типа и высоты радиатора отопления.
Пример.
Имеется 5 алюминиевых радиаторов по 7 секций, межцентровое расстояние подключения 500мм. Необходимо найти объем.
Считаем. 5х7х0,44=15,4 л.
Расчет объема теплоносителя в трубах отопления
Для расчета объема теплоносителя в трубах отопления необходимо определить суммарную длину всех однотипных труб и умножить ее на внутренний объем 1 м.п. трубы соответствующего диаметра.
Следует учесть, что внутренний объем труб из полипропилена, металлопласта и стали отличаются. В таблице 2 приведены характеристики стальных труб отопления.
Таблица 2.Внутренний объем 1 метра стальной трубы.
Диаметр, дюймы | Наружный диаметр, мм | Внутренний диаметр, мм | Объем, м3 | Объем, л |
1/2» | 21,3 | 15 | 0,00018 | 0,177 |
3/4» | 26,8 | 20 | 0,00031 | 0,314 |
1» | 33,5 | 25 | 0,00049 | 0,491 |
1 1/4» | 42,3 | 32 | 0,00080 | 0,804 |
1 1/2» | 48 | 40 | 0,00126 | 1,257 |
2» | 60 | 50 | 0,00196 | 1,963 |
2 1/2» | 75,5 | 70 | 0,00385 | 3,848 |
3» | 88,5 | 80 | 0,00503 | 5,027 |
3 1/2» | 101,3 | 90 | 0,00636 | 6,362 |
4» | 114 | 100 | 0,00785 | 7,854 |
В таблице 3 характеристики полипропиленовых труб усиленных, чаще всего применяемых для отопления PN20.
Таблица 3.Внутренний объем 1 метра полипропиленовой трубы.
Наружный диаметр, мм | Внутренний диаметр, мм | Объем, м3 | Объем, л |
20 | 13,2 | 0,00014 | 0,137 |
25 | 16,4 | 0,00022 | 0,216 |
32 | 21,2 | 0,00035 | 0,353 |
40 | 26,6 | 0,00056 | 0,556 |
50 | 33,4 | 0,00088 | 0,876 |
63 | 42 | 0,00139 | 0,139 |
75 | 50 | 0,00196 | 1,963 |
90 | 60 | 0,00283 | 2,827 |
110 | 73,4 | 0,00423 | 4,231 |
В таблице 4 приведены характеристики металлопластиковых труб.
Таблица 4.Внутренний объем 1 метра металлопластиковой трубы.
Наружный диаметр, мм | Внутренний диаметр, мм | Объем, м3 | Объем, л |
16 | 12 | 0,00011 | 0,113 |
20 | 16 | 0,00020 | 0,201 |
26 | 20 | 0,00031 | 0,314 |
32 | 26 | 0,00053 | 0,531 |
40 | 33 | 0,00086 | 0,855 |
Пример расчета объема системы отопления
Трубы отопления стальные причем стояки выполнены из труб 1/2’’, подача и обратка из трубы 1’’. Общая длина стояков 12 м, длина обратки и подачи 20м.
Считаем. 12х0,177+20х0,491=11,944 л.
Теперь остается сложить объем теплоносителя в радиаторах, в трубах отопления, в котле (объем указан в паспорте), расширительного бачка и в результате объем системы отопления.
Таким образом, объем системы отопления — это сумма объемов всех ее элементов. Зная объем системы отопления можно приступить к выбору расширительного бака или котла. Кроме того, расчет объема системы отопления необходим при приобретении и заливки теплоносителя. Однако в этом случае следует учесть еще объем расширительного бака и внутренний объем теплообменника котла. Вся эта информация присутствует в паспорте на котел.
Мощность бытовых электроприборов
На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.
Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.
Методика расчета
Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:
- Номинальный показатель мощности системы (НМ).
- Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
- Потери короткого замыкания (ПКЗ).
- Количество потребленной энергии за определенное количество времени (ПЭ).
- Полное количество отработанных часов за месяц (квартал) (ОЧ).
- Число отработанных часов при номинальном уровне нагрузки (НЧ).
Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.
Взаимосвязь полезной мощности и КПД
Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.
Формула имеет вид:
η = А/Q,
где:
- А – полезная работа (энергия);
- Q – затраченная энергия.
По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:
- электродвигатель – до 98%;
- ДВС – до 40%;
- паровая турбина – до 30%.
Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.
Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого
Получение максимальной энергии на выходе ИП
К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.
Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.
Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.
График зависимости Рпол и η от тока в цепи
Достижение максимального КПД
Формула КПД источника тока имеет вид:
η = Pн/Pобщ = R/Rн+r,
где:
- Pн – мощность нагрузки;
- Pобщ – общая мощность;
- R – полное сопротивление цепи;
- Rн – сопротивление нагрузки;
- r – внутреннее сопротивление ИТ.
Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.
Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:
- изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
- приближения их значений к параметрам окружающей среды по окончании расширения.
Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.
К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.
Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:
- некоторая часть давления уходит на внешнюю среду;
- достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
- нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
- использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.
Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:
- ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
- наиболее полно перед расширением использовать оба вида энергии рабочего тела;
- осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.
Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.
КПД двигателя внутреннего сгорания
2.1 Исходные данные
2.1.1 Источником
теплоснабжения является ТЭЦ в составе АО-энерго, входящего в РАО «ЕЭС России».
На балансе
АО-энерго находятся магистральные и часть распределительных водяных ТС,
основная часть распределительных и квартальные сети эксплуатируются
муниципальным предприятием; ТС на промпредприятия, составляющие незначительную
долю всех ТС, находятся на балансе промпредприятий.
Присоединенная
тепловая нагрузка по договорам составляет 1258 Гкал/ч; в том числе
коммунально-бытовая 1093 и промышленная 165 Ткал/ч; отопительно-вентиляционная
тепловая нагрузка составляет 955 Гкал/ч, максимальная нагрузка на горячее
водоснабжение (по закрытой схеме) — 303 Гкал/ч; отопительно-вентиляционная
нагрузка коммунально-бытового сектора — 790 Гкал/ч, в том числе отопительная —
650 и вентиляционная — 140 Гкал/ч.
Утвержденный
АО-энерго температурный график отпуска тепла (рисунок настоящих Рекомендаций) — повышенный, расчетными
температурами воды 150/70 °С при расчетной температуре наружного воздуха tн.р = -30 °С, со срезкой 135 °С, спрямлением для горячего
водоснабжения (ГВС) 75 °С.
2.1.2 Тепловая
сеть двухтрубная тупиковая; ТС выполнены в основном подземной канальной и
надземной на низких опорах прокладкой, другие виды прокладки (бесканальная, в
проходных каналах и т.п.) занимают незначительный объем (по материальной
характеристике). Тепловая изоляция выполнена из минераловатных изделий.
Продолжительность
отопительного периода 5808 ч, летнего — 2448, ремонтного — 504 ч.
2.1.3
Материальная характеристика ТС на балансе АО-энерго по участкам представлена в
таблице настоящих
Рекомендаций.
2.1.4
Среднемесячные и среднегодовые значения температуры наружного воздуха и грунта
(на средней глубине залегания трубопроводов) по данным местной
метеорологической станции или климатических справочников, усредненным за
последние 5 лет, приведены в таблице
настоящих Рекомендаций.
2.1.5
Среднемесячные значения температуры сетевой воды в подающем и обратном
трубопроводах по утвержденному температурному графику отпуска тепла при
среднемесячных значениях температуры наружного воздуха и среднегодовые значения
температуры сетевой воды приведены в таблице настоящих Рекомендаций.
2.1.6 Результаты
испытаний по определению тепловых потерь в виде поправочных коэффициентов к
удельным тепловым потерям по нормам проектирования составляют: в среднем по
надземной прокладке — 0,91; по подземной — 0,87. Испытания проводились в 1997
г. в соответствии с РД
34.09.255-97 [].
Испытаниям
подвергались участки магистрали № 1 ТЭЦ ÷ ТК-1 и TK-1 ÷ TK-2 надземной прокладки с наружными
диаметрами 920 и 720 мм протяженностью соответственно 1092 и 671 м и участки
магистрали № 2 TK-1 ÷ TK-4 и ТК-4 ÷ ТК-6 подземной
канальной прокладки с наружными диаметрами 920 и 720 мм протяженностью
соответственно 88 и 4108 м. Материальная характеристика испытанных сетей
составляет 38 % всей материальной характеристики ТС на балансе АО-энерго.
2.1.7 Ожидаемый
(планируемый) отпуск тепловой энергии, определяемый планово-экономическими
службами энергоснабжающей организации по месяцам и за год, приведен в таблице настоящих Рекомендаций (без учета
количества тепла на промпредприятия).
Способы расчета объема
Величину внутреннего пространства изготовленных согласно гост батарей можно определить двумя способами:
- Заглянуть в техническую документацию и найти среди указанных характеристик нужную цифру. Далее необходимо провести простые математические операции.
- Залить воду и измерить ее объем или вес.
Определяем объем с помощью документации
Начальные цифры можно взять, как из документации с техническими характеристиками, так и со специальных составленных производителями таблиц. В обоих случаях указывается определенный показатель, которому соответствует такой объем воды, который может уместиться .
Этим определенным показателем является межосевое расстояние. Под ним понимают расстояние, которое разделяет верхний и нижний коллекторы. Многие производители выпускают батареи, соблюдая стандартные значения межосевого расстояния. Чаще всего оно составляет 30 и 50 см.
Расчет объема воды, которая может поместиться в отопительном устройстве, изготовленном согласно гост, предусматривает такие шаги:
- Определение длины панельных радиаторов или алюминиевых или биметаллических батарей с гладкими внутренними стенками (такие стенки позволяют снизить гидравлическое сопротивление).
- Определение объема воды на погонный метр. Для этого в таблице смотрят на такую характеристику, как межосевое расстояние. Напротив его величины ищут объем воды. Если устройство для отопления секционное, то узнают, сколько воды может поместиться внутри одной секции.
- Перемножение полученных величин.
Этот метод довольно сложно использовать для трубчатых радиаторов и батарей, выполненных согласно индивидуальным потребностям.
Это потому, что для первых устройств производители используют различные, прошедшие проверку на гост, трубы. Они имеют разные диаметры, толщину стенок, а также длину. Поэтому таблиц с усредненными значениями объема и расстояния между коллекторами нет. Их невозможно составить. Конечно, на помощь может прийти документация с техническими характеристиками, а также составленная производителем таблица. В ней кроме межосевого расстояния также может указываться сопротивление нагретой жидкости и вес устройства с этой жидкостью.
Что касается устройства отопления, изготовленного по желанию клиента, то для него может и не быть технической документации с очень детальными характеристиками. Ведь оно выпускается только в малой партии, и нет смысла высчитывать все характеристики, включая объем и сопротивление воде.
Усредненные значения объема
Для примера взяты радиаторы с межосевым расстоянием 500 мм. Итак, объем таков:
- 1,7 л на каждую секцию рассчитанного на большое давление ЧМ-140;
- 1 л на каждую секцию этой же батареи, однако, нового образца;
- 0,25 л на каждые 10 см панельного устройства типа 11. Для конструкций с двумя и тремя рассчитанными на небольшое давление панелями этот показатель составляет 0,5 и 0,75 л на 10 см;
- 0,45 л на каждую легкую по весу секцию батарей из алюминия.
- 0,25 л на одну секцию биметаллического изготовляемого согласно гост радиатора.
Универсальный метод
Он подходит для любого типа нагревательного устройства с любым межосевым расстоянием. Для его реализации нужно запастись большим количеством воды и емкостью, объем которой является известным.
Измерение осуществляют так:
- Устанавливают на два нижних отверстия. Можно было бы установить и третью заглушку на одно из верхних отверстий, однако лучше подождать. Это потому, что при наливании воды в одно отверстие, через другое должен выходить воздух.
- Наливают воду до тех пор, пока она не начнет вытекать из второго свободного отверстия.
- Ставят заглушку на этом отверстии и медленно заливают воду до тех пор, пока вся батарея не будет полностью заполнена. Во время наливания подсчитывают количество вылитых емкостей. Это можно делать и во время спускания воды из радиатора. Правда, придется спускать воду в ведро или что-то другое и потом ее выливать.
(1 голосов, рейтинг:5,00 из 5)
Чаще всего расчет объема теплоносителя в системе отопления необходим или при ее замене, или при реконструкции. Наиболее простой способ его проведения — использование расчетных таблиц. Их можно найти в специализированных справочных изданиях. Согласно содержащейся в них информации:
- секция радиатора из алюминия содержит 0,45 литра теплоносителя;
- секция новой/старой чугунной батареи — 1/1,75 литра;
- погонный метр 15-тимиллиметровой/32-хмиллиметровой трубы — 0,177/0,8 литра.
Эффективность нагревателей
Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.
Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:
- Q — количество теплоты в джоулях;
- Δ t — интервал времени выделения энергии в секундах;
- размерность полученной величины Дж / с = Вт.
В этом видео вы узнаете, как рассчитать количество теплоты:
Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.
Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.