Однофазные и трехфазные реле постоянного тока — принцип работы

Принцип работы пускового реле

Несмотря на большое количество запатентованных продуктов от различных производителей, схемы работы холодильников и принципы действия пусковых реле практически одинаковы. Разобравшись в принципе их действия можно самостоятельно отыскать и устранить неисправность.

Схема устройства и подключение к компрессору

Электрическая схема реле имеет два входа от источника питания и три выхода на компрессор. Один вход (условно – ноль) проходит напрямую.

Другой вход (условно – фаза) внутри устройства расщепляется на два:

  • первый проходит напрямую на рабочую обмотку;
  • второй проходит через разъединяющиеся контакты на пусковую обмотку.

Если реле не имеет посадочного места, то при подключении к компрессору необходимо не ошибиться с порядком соединения контактов. Распространенные в Интернете способы определения типов обмотки с помощью измерения сопротивления не верны в общем случае, так как у некоторых двигателей сопротивление пусковой и рабочей обмотки одинаковы.

Электрическая схема пускозащитного реле может иметь незначительные модификации в зависимости от производителя. На рисунке приведена схема подключения этого устройства в холодильнике Орск

Поэтому необходимо найти документацию или разобрать компрессор холодильника для понимания расположения проходных контактов.

Также это можно сделать при наличии символьных идентификаторов возле выходов:

  • “S” – пусковая обмотка;
  • “R” – рабочая обмотка;
  • “C” – общий выход.

Реле отличаются способом крепления на раме холодильники или на компрессоре. Также они имеют свои токовые характеристики, поэтому при замене необходимо подобрать полностью идентичное устройство, а лучше – той же модели.

Замыкание контактов посредством индукционной катушки

Электромагнитное пусковое реле работает по принципу замыкания контакта для пропуска тока через пусковую обмотку. Основной действующий элемент устройства – соленоидная катушка, последовательно включенная в цепь с основной обмоткой двигателя.

В момент запуска компрессора, при статичном роторе, по соленоиду проходит большой стартовый ток. В результате этого создается магнитное поле, которое перемещает сердечник (якорь) с установленной на нем токопроводящей планкой, замыкающей контакт пусковой обмотки. Начинается разгон ротора.

При увеличении числа оборотов ротора, величина проходящего через катушку тока снижается, вследствие чего напряжение магнитного поля уменьшается. Под действием компенсирующей пружины или силы тяжести сердечник возвращается на исходное место и контакт размыкается.


На крышке реле с индукционной катушкой есть стрелка “верх”, которая указывает правильное положение устройства в пространстве. Если его разместить по-другому, то не произойдет размыкание контактов под действием силы тяжести

Мотор компрессора продолжает работать в режиме поддержания вращения ротора, пропуская ток через рабочую обмотку. Следующий раз реле сработает только после остановки ротора.

Регулирование подачи тока позистором

Выпускаемые для современных холодильников реле часто используют позистор – разновидность теплового резистора. Для этого устройства существует температурный диапазон, ниже которого оно пропускает ток с незначительным сопротивлением, а выше – сопротивление резко увеличивается и происходит размыкание цепи.

В пусковом реле позистор интегрирован в цепь, ведущую к стартовой обмотке. При комнатной температуре сопротивление этого элемента незначительное, поэтому при начале работы компрессора ток проходит беспрепятственно.

По причине наличия сопротивления позистор постепенно нагревается и по достижению определенной температуры происходит размыкание цепи. Остывает он только после прекращения подачи тока на компрессор и снова срабатывает на пропуск при повторном включении двигателя.

Позистор имеет форму низкого цилиндра, поэтому профессиональные электрики его часто называют “таблеткой”

Реле приоритета нагрузки РПН-1-25 УХЛ4

Назначение:

Реле приоритета РПН-1-25 предназначено для перераспределения потребления электроэнергии в электрических системах с лимитированной максимальной мощностью. При превышении потребляемого тока реле приоритета отключит неприоритетную нагрузку. Иногда требуется ограничить максимальный ток, который разрешено потреблять отдельной электрической системой из общей электрической сети либо из соображений экономии, либо из-за малого сечения подводящих проводов, либо из-за ограничения по мощности поставщиком электроэнергии. Реле приоритета применяются для того, чтобы предотвратить отключение главного автоматического выключателя на вводе. Аналогичная ситуация возникает при подключении новых нагрузок без изменения электрической схемы (сечения проводов, автоматических выключателей и т.д.). В этом случае реле приоритета устанавливается в цепь питания неприоритетной нагрузки, которая будет отключена при превышении разрешенной максимальной мощности. Реле приоритета определит, когда суммарный ток электрической системы вернется в заданные пределы и снова включит неприоритетные нагрузки.

Реле позволяет увеличить количество нагрузок без изменения выделенной мощности, уменьшить потребляемую мощность и предотвратить неудобства, связанные с отключением вводного автоматического выключателя.

Также возможно применение реле приоритета для использования в схемах релейной защиты и противоаварийной автоматики в качестве реле максимального тока для защиты электрических машин, трансформаторов и пр. оборудования при коротких замыканиях и перегрузках.

Отличительные особенности:

— перераспределение электроэнергии в электрических системах с лимитированной максимальной мощностью;

— возможность использования в качестве реле максимального тока;

— измерение тока с помощью встроенного трансформатора тока;

— питание от контролируемого тока — не требует оперативного питания;

— регулировка срабатывания по току от 2,5 до 25 А;

— регулируемая задержка срабатывания от 0.2 до 20с;

— корпус шириной 1 модуль (18 мм).

Работа реле:

Реле не требует оперативного питания. Провод питания нагрузки вводится в отверстие корпуса. Если измеренное значение тока превысит установленное пороговое значение, исполнительное реле включится после отсчета установленной потенциометром «t» выдержки времени. При возвращении значения тока в исходное состояние реле выключается без задержки. Если во время этого отсчета значение тока вернется в пределы установленных значений, работа будет продолжена без переключения исполнительного реле. Порог срабатывания устанавливается верхним потенциометром, в пределах 10…100% от максимального значения тока. Когда исполнительное реле выключено замкнуты контакты реле 11-12, когда включено — замкнуты контакты 11-14.

Внимание!

Положение контактов при поставке может быть произвольным, при первом срабатывании исходное (выключенное) состояние контактов восстанавливается.

Виды ТТР

Твердотельные реле по устройству и принципу работы можно разделить на следующие разновидности:

  • По виду управляющего напряжения – переменное или постоянное (дискретные). Иногда на вход подключается переменный резистор, т.е. используется аналоговое управление, соответственно и выходное напряжение меняется плавно, как в диммере для освещения.
  • По виду коммутируемого напряжения – переменное или постоянное.
  • По количеству фаз для переменного напряжения – одна или три.
  • Для трехфазных – с реверсом или без.
  • По конструкции – монтаж на поверхность или на ДИН-рейку. Хотя, практически все производители предлагают переходные планки для универсального монтажа.

Кроме того, стандартной опцией для коммутации переменного напряжения является переключение в момент перехода через ноль.

Выше уже было фото ТТЛ, у которого вход – постоянное напряжение, выход – переменное (АС-DC). Вот ещё какие реле у меня есть сейчас под рукой:

SSR OMRON DC-DC. Вход – постоянное напряжение до 24 В, выход – тоже постоянное, до 200 В

SSR FOTEK DC-DC – твёрдотельные реле постоянного тока

Этими двумя моделями реле удобно коммутировать нагрузку с постоянным напряжением 24 Вольта, когда управляющий сигнал (тоже 24 В) приходит с выхода контроллера или с датчика. Можно сказать, что это такие компактные усилители тока. Причем коэффициент усиления при этом – около 1000, поскольку ток управляющей цепи – менее 10 мА.

Дальше-больше. Ниже показано трехфазное твердотельное реле. На его входы R, S, T подается три фазы 380В, а с его выходов U, V, W напряжение подается на асинхронный двигатель или трехфазный ТЭН.

Fotek 3 phase. Трехфазное твердотельное реле

Это реле работает (по результатам работы) примерно, как магнитный пускатель с катушкой 24 VDC.

Управляющие контакты показаны поближе:

Fotek 3 phase. Входные управляющие контакты

Видите на фото, под управляющие контакты предусмотрено ещё одно место, которое в данном случае не используется? На этом месте у другой модели подается сигнал реверса. То есть, при подаче на один вход фазы через реле коммутируются для прямого вращения двигателя, при подаче на другой вход – для обратного.

Трехфазные реле с реверсом бывают с коммутацией двух фаз, третья подключена к двигателю постоянно.

А теперь представьте, столько места занимает и сколько шума при работе создает обычное реверсивное реле на такой ток? То-то и оно!

Вот такое же ТТЛ, но помощнее и с управлением от переменки 220В.

Fotek TSR-40AA-H 3 phase 40A

Вроде всё, пишите, у кого какой опыт по применению!

Вот нарыл в свободном доступе файлы, возможно, написано информативнее, чем у меня:

• Твердотельные реле Фотек• Твердотельные реле – устройство и принцип работы

Схемы включения

Управление твердотельными реле схемотехнически такое же, как и у обычного реле. Ниже упрощенно показана схема включения:

Схема включения твердотельного реле

Схема показана для реле, у которого управляющее напряжение постоянное, от 5 до 24 Вольт. Данное реле может коммутировать переменное напряжение до 240 Вольт, ток до 20 А.

С током не всё так просто, но об этом ниже.

Как работает схема. На вход (контакты 3 и 4, соблюдать полярность!)  подается управляющее напряжение от источника 24В. Подается оно через цепь управления, которая представлена как НО контакт. Этим контактом может быть и обычное реле, и выход контроллера, и датчик с релейным выходом или транзисторным выходом типа PNP.

Про НО контакты и PNP выходы датчиков я подробно написал в этой статье. Очень рекомендую!

Пример включения трехфазного реле — на фото ниже:

Включение трехфазного твердотельного реле

Как видно, реле не совсем трехфазное, одна фаза подается на двигатель постоянно, что может стать причиной опасности.

Та же особенность бывает в устройствах плавного пуска.

На корпусе реле напечатана его схема включения, где всё понятно. Реле реверсивное, и у него два входа — Forward и Reverse (Вперёд/Назад). Для реверса фазы L1 и L2 меняются местами.

Важно — внутри реле нет блокировки от одновременного включения в обоих направлениях, и ее надо обеспечить аппаратно (блокировочные контакты кнопок/реле) и программно (если управление — от контроллера). Если это не предусмотреть, то вероятна ситуация, когда силовые выходы 1, 2, 3, 4 будут замкнуты накоротко

Залог безопасности вашей электросети

Сегодня, в условиях невероятно быстрого развития технического потенциала цивилизованных стран, всё большую роль в их существовании начинают играть электроприборы. Пожалуй, нет такого дома, в котором не найдётся хотя бы одного прибора, использующего электричество в качестве источника энергии. Отдельным и неизменным в течение всей истории существования контролируемой электроэнергии стоял вопрос о безопасности её использования. Провалы и всплески напряжения в сети создали множество проблем для пожарных двух последних веков. С течением времени человечеством было найдено эффективное средство минимизации риска использования электричества в бытовых условиях. Таким средством стало использование реле напряжения в электроцепях. Данный прибор мгновенно реагирует на изменение напряжения в цепи, предотвращая возгорание и поломку оборудования.

На текущий момент, наверное, не существует электроприборов, в которых не использовалось бы реле напряжения. Оно состоит из двух основных частей — это разъединитель электрической цепи и установленный непосредственно в само реле регулятор напряжения. Последнее производится на основе микропроцессора либо – в более примитивном исполнении – на основе компаратора. Реле напряжения, созданное на основе микропроцессора, имеет возможность плавной регулировки величин срабатывания.

Главным требованием, определяющим качество реле, является скорость его срабатывания. Самые современные срабатывают практически мгновенно, вплоть до милисекунд. После того, как сеть была обесточена, а реле контроля напряжения обеспечило подачу питания в рамках приемлемых показателей, подача электрического тока возобновляется. Это происходит через заранее запрограммированный промежуток времени. При возникновении критических аварийных ситуаций именно реле напряжения становится главным гарантом их ликвидации.

Чтобы избежать неприятных случаев неисправности реле, приобретать их следует в фирменных магазинах наподобие АВС электро http://avselectro-msk.ru/catalog/4192-rele

Вы сразу можете произвести выбор реле по интересующим вас ценам и параметрам, разом охватывая вниманием весь ассортимент

Они могут выпускаться в форме удлинителей, разветвителей, тройников, а также в виде модуля с вилкой и розеткой – в зависимости от метода подключения электроприбора.

Модуль инсталлируется непосредственно в розетку. Микроконтроллер модуля контролирует состояние напряжения в электросети, проецируя данные на цифровое табло. В случае возникновения необходимости электромагнитное реле осуществляет прерывание подачи тока. Установление величин срабатывания реле и определение времени задержки производится при помощи специальных кнопок на модуле.

Удлинители, тройники, разветвители и прочие аппараты, служащие для распределения потока электропитания между несколькими электроприборами, устроены в основном аналогично описанным ранее модулям, за исключением того, что в приборе находится несколько розеток, отключение которых в случае возникновения необходимости производится одновременно.

В случае, если обезопасить от скачков напряжения предполагается целый дом, реле напряжения устанавливается в распределительном шкафу. Используя свои функциональные и конструктивные особенности, этот вид реле обладает способностью работать в различных независимых друг от друга режимах.

Принцип работы реле прост: напряжение цепи, находящееся в пределах нижнего порога срабатывания, компенсируется контактами самого реле. Как только напряжение превышает заданные величины, специальный магнитный инициатор прерывает цепь.

Изготовление твердотельного реле своими руками

Непосредственно своими руками, каждому электронщику среднего уровня под силу собрать простое твердотельное реле. Прибор, сделанный своими руками, может использоваться для управления нагрузкой, питаемой от бытовой сети переменного тока.

К примеру, можно сделать более эффективным управление лампами освещения или электродвигателями, если собрать электронный регулируемый коммутатор по следующей схеме.

Схема для сборки своими руками под нагрузку 300-600 Вт при напряжении 120 — 220В: 1 — оптопара МОС 320, МОС 341; 2 — симистор BTA06-600B; 3 — управляющий сигнал от микроконтроллера

Схема основана на электронном устройстве развязки — оптопаре MOC 3020. Между тем опто-симисторный регулятор MOC 3041 имеет те же характеристики, но дополнительно наделён встроенной системой детектирования пересечения точки нуля.

Этот вариант позволяет получить полную мощность без тяжелых пусковых токов при переключении индуктивных нагрузок. Благодаря диоду D1 предотвращается повреждение схемы по причине обратного подключения входного напряжения.

Резистор R3, номиналом 56 Ом, шунтирует прохождение токов, когда симистор находится в состоянии закрытого перехода, исключая ложное срабатывание.

Этим же резистором организуется связь терминала затвора с нижним по схеме электродом, чем обеспечивается полное закрытие перехода симистора.

Если используется входной сигнал широтно-импульсной модуляции, частота переключения режимов «включено-отключено» должна быть установлена максимум на 10 Гц не более для нагрузки переменного тока. В противном случае, переключение состояния выходной цепи реле может быть нарушено.

Известные модели


Расшифровка маркировки

Основные характеристики зависят от многих факторов. К популярным отечественным моделям, произведенным фирмами КИПпрбор, Протон, Cosmo, относятся:

  • ТМ-О. Устройства со встраиваемой схемой «ноль», через которую проходит переход фазы.
  • ТС. Модели, которые выключаются в любой момент времени.
  • Наиболее популярные и используемые – ТМВ, ТСБ, ТСМ, ТМБ, ТСА. Они обладают выходной RC цепью.
  • Тс/ТМ – силовые. Токи достигают значений 25 мА.
  • ТСА, ТМА – применяются в чувствительных приборах.
  • ТСБ, ТМБ – низковольтные модели. Напряжение не превышает 30 В.
  • ТСВ, ТМВ – высоковольтные. Напряжение достигает 280 В.

К иностранным аналогам относятся изделия, произведенные фирмами Carlo Gavazzi, Gefran, CPC.

Расшифровка

Модели SSR, TSR (однофазные и трехфазные соответственно) являются самыми популярными. Их сопротивление равно 50 Мом и более при напряжении 500 В.

Записывается обозначение как SSR -40 D A H. SSR или TSR обозначает число фаз. 40 – нагрузка в Амперах. Буквой обозначается сигнал на входе (L 4-20 мА, D – 3-32 В при постоянном токе, V – переменное сопротивление, A – 80-250 В при переменном токе). Следующая буква – входное напряжение (А – переменное, D – постоянное). Последняя буква – диапазон выходных напряжений (Н – 90-480 В, нет буквы – 24-380 В).

Минусы использования

  1. Установка реле очень трудоемкий процесс. Простому потребителю не под силу будет произвести такой объем работы. При этом необходимо выполнить реконструкцию проводки и распределительного щитка. С этой целью следует воспользоваться услугами специалиста, который произведет правильный расчет проводки, в соотношении с потребляемой нагрузкой подключенных электроприборов.
  2. Процесс монтажа предусматривает , и вследствие этого восстановление последних. Процесс установки реле напряжения является затратным, так как требует некоторых финансовых вложений.
  3. Одновременно с этим для установки механизма нужно приобрести специализированные кабеля и провести обособленную проводку к розеткам. Обычный провод для этой цели не подойдет.

Классификация твердотельных реле

Сферы применения реле разнообразны, поэтому и их конструктивные особенности могут сильно отличаться, в зависимости от потребностей конкретной автоматической схемы. Классифицируют ТТР по количеству подключенных фаз, виду рабочего тока, конструктивным особенностям и типу схемы управления.

По количеству подключенных фаз

Твердотельные реле используются как в составе домашних приборов, так и в промышленной автоматике с рабочим напряжением 380 В.

Поэтому эти полупроводниковые устройства, в зависимости от количества фаз, разделяются на:

  • однофазные;
  • трехфазные.

Однофазные ТТР позволяют работать с токами 10-100 или 100-500 А. Их управление производится с помощью аналогового сигнала.

К трехфазному реле рекомендуется подключать провода различных цветов, чтобы при монтаже оборудования можно было правильно их присоединить

Трехфазные твердотельные реле способны пропускать ток в диапазоне 10-120 А. Их устройство предполагает реверсивный принцип функционирования, который обеспечивает надежность регуляции одновременно нескольких электрических цепей.

Часто трехфазные ТТР используются для обеспечения работы асинхронного двигателя. В его электросхему управления обязательно включаются быстрые предохранители из-за высоких пусковых токов.

По виду рабочего тока

Твердотельные реле нельзя настроить или перепрограммировать, поэтому они могут нормально работать только при определенном диапазоне электропараметров сети.

В зависимости от потребностей ТТР могут управляться электроцепями с двумя видами тока:

  • постоянным;
  • переменным.

Аналогично можно классифицировать ТТР и по виду напряжения активной нагрузки. Большинство реле в бытовых приборах работают с переменными параметрами.

Постоянный ток не используется в качестве основного источника электроэнергии ни в одной стране мира, поэтому реле такого типа имеют узкую сферу применения

Устройства с постоянным управляющим током характеризуются высокой надежностью и используют для регуляции напряжение 3-32 В. Они выдерживают широкий диапазон температур (-30..+70°С) без значительного изменения характеристик.

Реле, регулирующиеся переменным током, имеют управляющее напряжение 3-32 В или 70-280 В. Они отличаются низкими электромагнитными помехами и высокой скоростью срабатывания.

По конструктивным особенностям

Твердотельные реле часто устанавливают в общий электрощит квартиры, поэтому многие модели имеют монтажную колодку для крепления на DIN-рейку.

Кроме того, существуют специальные радиаторы, располагающиеся между ТТР и опорной поверхностью. Они позволяют охлаждать прибор при высоких нагрузках, сохраняя его рабочие характеристики.

Реле крепиться на DIN-рейку преимущественно через специальный кронштейн, который имеет и дополнительную функцию – отводит излишки тепла при работе прибора

Между реле и радиатором рекомендуется наносить слой термопасты, который увеличивает площадь соприкосновения и увеличивает теплоотдачу. Существуют и ТТР, предназначенные для крепления к стене обычными шурупами.

По типу схемы управления

Не всегда принцип работы регулируемой реле техники требует его мгновенного срабатывания.

Поэтому производители разработали несколько схем управления ТТР, которые используются в различных сферах:

  1. Контроль «через ноль». Такой вариант управления твердотельным реле предполагает срабатывание только при значении напряжения, равном 0. Используется в устройствах с емкостной, резистивной (нагреватели) и слабой индуктивной (трансформаторы) нагрузкой.
  2. Мгновенное. Используется при необходимости резкого срабатывания реле при подаче управляющего сигнала.
  3. Фазовое. Предполагает регулирование выходного напряжения методом изменения параметров управляющего тока. Применяется для плавного изменения степени нагрева или освещения.

Твердотельные реле различаются и по многим другим, менее значимым, параметрам

Поэтому при покупке ТТР важно разобраться в схеме работы подключаемой техники, чтобы приобрести максимально соответствующее ей регулировочное устройство

Обязательно должен быть предусмотрен запас мощности, потому что реле имеет эксплуатационный ресурс, который быстро расходуется при частых перегрузках.

Конструктивные особенности

В основе твердотельного реле лежит электронная плата, в состав которой входит три главных элемента — узлы управления и развязки, а также силовой ключ. В роли силовых элементов применяются такие детали:

  • Для постоянного I — транзисторы полевого типа, простые транзисторы, модульные элементы класса IGBT, а также MOSFET-транзисторы.
  • Для переменного I — сборки на базе тиристоров, а также симисторы.

Развязка цепи обеспечивается оптронами — изделиями, состоящими из излучающего и принимающего свет устройства. Между ними установлен диэлектрик, имеющий прозрачную структуру.

Управляющий узел выполнен в виде стабилизирующей схемы, обеспечивающей оптимальные уровни тока и напряжения для излучающего свет элемента. Напряжение на входе схемы должно быть от 70 до 280 Вольт.

Что касается напряжения нагрузки, его величина — до 480 Вольт. Расположение электроприбора (до или после ТТР) не имеет значения.

Как правило, устройство монтируется после нагрузки с последующим подключением к «земле». При таком варианте схемы удается защитить внутренние элементы от протекания тока КЗ (он потечет через заземляющий провод).

Принцип работы и установки РПН

К общей линии подключается трансформатор тока, а после него — потребители. К первой очереди в схему включаются нагрузки, имеющие приоритетное значение и не подлежащие отключению.

Затем в схему включается реле потребителей, через которое соединяются неприоритетные группы нагрузок

При превышении тока в сети они будут отключаться в установленной последовательности в соответствии со степенью важности. Приходящий от измерителя тока сигнал поступает для анализа на встроенный в модуль компаратор

Этот элемент производит соотнесение сигнала с установленным по настройкам значением основного напряжения. Реле определяет момент срабатывания компаратора, время отключения нагрузок с малым приоритетом. Как результат — снижение тока в сети. Через установленное в настройках прибора время реле попытается подключить к сети менее важных потребителей

Приходящий от измерителя тока сигнал поступает для анализа на встроенный в модуль компаратор. Этот элемент производит соотнесение сигнала с установленным по настройкам значением основного напряжения. Реле определяет момент срабатывания компаратора, время отключения нагрузок с малым приоритетом. Как результат — снижение тока в сети. Через установленное в настройках прибора время реле попытается подключить к сети менее важных потребителей.

Многоканальные РПН способны одновременно работать с несколькими линиями, последовательно отключающихся, начиная с нижайшего приоритета. Включаются линии, наоборот, начиная с более высокого уровня значимости.

Установка реле позволяет обойтись стандартным комплектом оборудования без затрат на дополнительную мощность сети. Это позволяет сэкономить средства — это особенно заметно в масштабах даже малого предприятия.

Ниже представлена схема подключения на примере квартиры. На входе имеется выключатель (25А), далее счетчик и группа автоматов. Также подключено определенное число бытовых приборов различных видов и мощности.

При необходимости одновременного включения сразу всех электропотребителей, выходной автомат в щитке отключится, свет погаснет и все приборы прекратят свое функционирование. В действие будет приведена тепловая блокировка и автомат отключит от электропитания всю квартиру. Будет необходимо найти причины, приведшие к перегрузке, и заново включить автомат.

Совет №1: При использовании РПН такой проблемы и связанных с ней сложностей можно избежать. Необходимо выделить в приоритетные те линии, которые требуются в первую очередь, и отнести к неприоритетным малозначительные нагрузки. Прибор ограничит поступление электротока из сети и не допустит полного выключения.

Такие устройства широко используются и в системах защиты на предприятиях любого масштаба для не допущения возникновения аварийных и внештатных ситуаций. Особенно актуально применение РПН на производствах с большим количеством станков и технологического оборудования, на которых перегрузки, короткие замыкания или отключение электроэнергии могут привести к серьезным последствиям.

Схема подключения реле напряжения РН-113

Но я бы не стал этого делать, так как контакты у РН-113 достаточно слабые для провода сечением 6 мм2, а именно такое сечение необходимо для подключения на 32А.

Надежнее РН-113 также подключать с контакторами, без контакторов максимум на 25А. Я не использую в своих щитах реле напряжения от Новатек, поэтому фото позаимствовал у одного из электромонтажников с форума Avs1753.

Смотрится, конечно, красиво, но такое подключение занимает на 3-4 модуля больше и раза в два дороже по стоимости, чем если бы применили УЗМ-51М или Zubr.

А вот, что бывает, с РН-113, если его подключить без контакторов на 32А.

К сожалению какой-либо информации об испытаниях, как у УЗМ-51М и Зубра я не нашел на форумах.

Реле DigiTop

Также как и Зубр, данные реле выпускают в Донецке. Производитель выпускает несколько серий приборов с защитой от скачков напряжения.

Реле напряжения серии V-protektor предназначено только для защиты от перепадов напряжения. Выпускается на номинальные токи 16, 20, 32, 40, 50, 63 А в однофазном исполнении, имеет встроенную термозащиту от перегрева, срабатывающую при 100 градусах. Верхний порог срабатывания от 210 до 270 В, нижний – от 120 до 200 В. Время автоматического включения от 5 до 600 сек. Есть и трехфазное реле V-protektor 380, достаточно компактное 35 мм (два модуля), но максимальный ток в фазе не более 10А.

На однофазное реле напряжения Protektor гарантия 5 лет, на трехфазное реле только 2 года.

Преимущества твердотельных реле

В виду явных преимуществ, твердотельные реле в сравнении с электромагнитными образцами, успешно вытесняют последние, рассмотрим, в чем их основные достоинства:

  • Конструкции твердотельных реле имеют компактные размеры, надежную герметичность, стойки к механическим ударам и эксплуатации в условиях сильной вибрации;
  • Надежность работы этих изделий такова, что производители гарантируют число срабатываний больше миллиарда раз;
  • Работа прибора абсолютно бесшумна, так как отсутствует электромагнит и трескучая группа механических контактов;
  • Высокое быстродействие;
  • При срабатывании отсутствуют побочные электромагнитные излучения, создающие помехи для электроники и радиотехнической аппаратуры;
  • Твердотельные реле практически универсальны, имеют высокую степень защит. Могут применяться на объектах с любыми производственными условиями, в бытовых условиях или на взрывоопасных участках;
  • Сроки эксплуатации рассчитаны на десятки лет, при этом не требуется регулярного технического обслуживания;
  • Так как отсутствуют электромагниты, то потребление электроэнергии твердотельных реле на 90% ниже контактных.

К достоинствам можно отнести и удобную конструкцию для монтажа в различных местах установки.

Классификация

По типу нагрузки твердотельные реле делятся на однофазные и трехфазные. Широкий диапазон коммутируемого напряжения – 40…440 В позволяет использовать их для управления нагрузками в различных областях промышленности. По типу управления можно выделить 4 группы:

  • управление напряжением постоянного тока (3…32 В);
  • правление напряжением переменного тока (90…250 В);
  • ручное управление выходным напряжением с помощью переменного резистора (470-560 кОм, 0,25-0,5 Вт);
  • ручное управление выходным напряжением с помощью аналогового сигнала 4-20 мА.

Различные варианты управляющих сигналов позволяют применять твердотельные реле в качестве коммутационных элементов в разнотипных системах автоматического управления.

По способу коммутации реле могут быть:

  • с контролем перехода через ноль.Применяются для коммутации резистивных (электрические нагревательные элементы, лампы накаливания), емкостных (помехоподавляющие сглаживающие фильтры, имеющие в своем составе конденсаторы) и слабоиндуктивных (катушки соленоидов, клапанов) нагрузок. При подаче управляющего сигнала, напряжение на выходе такого реле появляется в момент первого пересечения линейным напряжением нулевого уровня. Это позволяет уменьшить начальный бросок тока, снизить уровень создаваемых электромагнитных помех и, как следствие, увеличить срок службы управляемых с помощью данного реле устройст. Недостатком устройств данного типа является невозможность коммутации высокоиндуктивной нагрузки, когда cos φ<0,5 (трансформаторы на холостом ходу).
  • с мгновенным (случайным) включением.Применяются для коммутации резистивных (электрические нагревательные элементы, лампы накаливания) и индуктивных (маломощные двигатели, трансформаторы) нагрузок при необходимости мгновенного срабатывания. Напряжение на выходе реле данного типа появляется одновременно с подачей управляющего сигнала (время задержки включения не более 1 миллисекунды), а значит включение возможно на любом участке синусоидального напряжения. Устройства данного типа имеют существенный недостаток – возникновение импульсных помех и начальных бросков тока при коммутации. После включения они функционируют как обычное реле с контролем перехода через ноль.
  • с фазовым управлением.Позволяют реализовать фазоимпульсное (ФИМ) управление мощностью на нагрузке. С помощью таких реле можно, напримет, управлять нагревательными элементами (регулирование температуры) или лампами накаливания (регулирование уровня освещенности).

Твердотельные реле различного размера.

Особенности процесса изготовления

Нагрузка нагревательного элемента составляет Вт.
Вход — это первичная цепь, в которой устанавливается постоянное сопротивление.
В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются.
Выходная мощность порядка Вт. Здесь в схеме два варианта входа: ввод управления напрямую к диоду оптрона и входной сигнал подающийся через транзистор. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках.
Рекомендации о выборе кулеров приводятся в технической документации на конкретное твердотельное реле, поэтому давать универсальные советы нельзя. Соблюдая определенный ряд условий, твердотельные реле можно использовать для пуска асинхронных двигателей.


Поэтому существует максимально возможная задержка выключения между удалением входного сигнала и отключением тока нагрузки в один полупериод. Между цепями управления и нагрузкой качественная изоляция. Эти реле, работающие бесшумно, являются хорошей заменой контакторам и пускателям. Такой же принцип регулировки используется в бытовых диммерах для освещения. Когда сигнал входного напряжения постоянного тока удаляется, выход не отключается внезапно, так как после срабатывания проводимости тиристор или триак, используемый в качестве переключающего устройства, остается включенным в течение оставшейся части полупериода, пока токи нагрузки не упадут ниже удерживающих устройств тока, в этот момент он выключается.

Видео: тестирование твердотельного реле. Нужно выделить такие свойства твердотельных реле: При помощи оптической развязки обеспечивается изоляция различных цепей электронного устройства. В твердотельных моделях эту роль выполняют тиристоры, транзисторы и симисторы.

С его помощью происходит притягивание контактов. Защита может находиться как внутри корпуса реле, так и отдельно

Обратите внимание на то, что у симисторов выводы обычно неоднозначно определяются, поэтому их нужно заранее проверить. Чтобы подать силу напряжения на нагрузку используется цепь переключающего типа, которая включает транзистор, кремниевый диод и симистор

В этом примере подойдет любое предпочтительное значение резистора между Ом и Ом.
Твердотельное реле вместо контактора.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector