Разновидности и принцип работы выпрямителей напряжения

Силовые устройства

Силовые выпрямители в последнее время считаются очень распространенными. Показатель перегрузки при невысоком напряжении у них не превышает 15 А. Система защиты в основном используется серии Р37. Модели применяются для понижающих трансформаторов

Если говорить про конструктивные особенности, то важно отметить, что устройства выпускаются с пентодами. Они выделяются хорошей чувствительностью, но у них низкий параметр рабочей температуры

Конденсаторные блоки разрешается применять на 4 мк. Выходное напряжение свыше 10 В задействует преобразователь. Фильтры, как правило, используются на два изолятора. Также стоит отметить, что на рынке имеется множество выпрямителей с контроллерами. Основное их отличие кроется в возможности работы при частоте свыше 33 Гц. При этом перегрузка в среднем соответствует 10 А.

Регулятор работающий без помех

Ниже представлена схема регулятора мощности, не создающего помехи, поскольку он не «обрезает» полуволны, а «отрезает» их определенное количество. Принцип работы такого устройства мы рассматривали в разделе «Принцип работы фазового регулирования», а именно, переключение тиристора через ноль.

Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.

Перечень используемых в приборе радиоэлементов, а также варианты их замены:

Тиристор VS – КУ103В;

Диоды:

VD 1 -VD 4 – КД209 (в принципе можно использовать любые аналоги, которые допускают величину обратного напряжения более 300В, а ток свыше 0,5А); VD 5 и VD 7 – КД521 (допускается ставить любой диод импульсного типа); VD 6 – KC191 (можно использовать аналог с напряжением стабилизации равным 9В)

Конденсаторы:

С 1 – электролитического типа с емкостью 100мкФ, рассчитанный на напряжение не менее 16В; С 2 – 33Н; С 3 – 1мкФ.

Резисторы:

R 1 и R 5 – 120кОм; R 2 -R 4 – 12кОм; R 6 – 1кОм.

Микросхемы:

DD1 – K176 ЛЕ5 (или ЛА7); DD2 –K176TM2. В качестве альтернативы можно использовать логику серии 561;

R n – паяльник, подключенный в качестве нагрузки.

Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется. Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R 5 .

В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов (не забудьте перед этим отключить его от сети).

Еще один регулятор мощности

Когда у меня в очередной раз не получилось припаять контакт микросхемы перегретым паяльником с первого раза, я понял, что счастья в жизни не будет без регулятора мощности. И решил я закошачить себе такую штуку, но чтобы попроще и универсальным был (для разного рода нагрузки). Приглянулась мне популярная в интернете схемка на симисторе.

Данный регулятор мощности предназначен для регулировки мощности нагрузки до 500 Вт в цепях переменного тока с напряжением 220 В. Такой нагрузкой могут служить электронагревательные, осветительные прибороы, асинхронные электродвигатели переменного тока (вентилятор, электронаждак, электродрель и т.д.). Благодаря широкому диапазону регулировки и большой мощности регулятор найдет широкое применение в быту.

Симисторный регулятор мощности использует принцип фазового управления. Принцип работы такого регулятора основан на изменении момента включения симистора относительно перехода сетевого напряжения через ноль.

В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, R2. Увеличение напряжения на конденсаторе С1 отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления делителя R1+R2 и емкости С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечет ток, определяемый суммарным сопротивлением открытого симистора и нагрузки. Симистор остается открытым до конца полупериода. Резистором R1 устанавливается напряжение открывания динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности. Симистор установлен на алюминиевый радиатор размером 40х25х3 мм.

Настройки схема не требует. Если все смонтировано правильно, то сразу же начинает работать. При экспериментах с лампой накаливания мощностью 100 Вт был выявлен легкий нагрев тиристора (без радиатора). А наглядные результаты экспериментов, как и готового устройства, можно увидеть на фотографиях ниже.

Регулятор напряжения

– это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Регулятор напряжения

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Особенности ремонта и обслуживания

Для того чтобы со сварочным выпрямителем не возникало никаких проблем, нужно осуществлять правильное и регулярное обслуживание агрегата. При этом проверяется состояние всех имеющихся токопроводящих элементов, надежность фиксации клемм. Также удаляется грязь и пыль со всех внутренних деталей. Перед тем как использовать установку, ее нужно заземлить. Регулировочный винт вторичной обмотки нужно время от времени смазывать. Не следует использовать выпрямитель, на котором нет кожуха для защиты.

Что касается самых распространенных неисправностей, то к ним можно отнести сильный шум и перегрев устройства. Если вы заметили такие признаки, то это может говорить о следующем:

  • вентиляторная крыльчатка не подходит по размеру, и ее нужно поменять;
  • неисправен вентиляторный винт;
  • в первичной трансформаторной обмотке произошло замыкание, то есть ее необходимо заново перемотать;
  • произошло нарушение изоляции шпилек или листов сердечника.

Выпрямитель дает возможность производить сварку, получая при этом более надежные, ровные и качественные швы.

https://www.youtube.com/watch?v=aCpY2NQdI2o

Какими были первые выпрямители

Развитие электроснабжения начиналось с нуля. А это значит, что не было ни знаний, ни, тем более, оборудования для этого. Потребовалось почти столетие, чтобы появились современные полупроводниковые выпрямители. Они являются следствием исторически сложившейся инфраструктуры электроснабжения. А она, как известно, развивалась на основе переменного напряжения.

Электроснабжение на постоянном напряжении эффективнее, поскольку не сказываются потери в ЛЭП из-за индуктивности и емкости проводов. Но почти везде электроэнергия в сети соответствует переменному напряжению. Это происходит потому, что электроснабжение невозможно без изменения величины напряжения. А эту задачу до сих пор наиболее эффективно решает только трансформатор. Различие свойств электрических цепей с переменным и постоянным напряжением было сразу же замечено исследователями.

А поскольку эффективным источником электроэнергии является вторичная обмотка трансформатора, надо было так или иначе получить некое подобие постоянного напряжения на ее основе. На первом этапе развития электротехники появились только электромагнитные машины. Их и приспособили для выпрямления напряжения. Также было известно явление электролиза. Его тоже использовали для изготовления выпрямителей — электролитических.

Устройство и принцип работы

Устройство сварочного выпрямителя включает в себя несколько блоков, обеспечивающих выполнение рабочего процесса. Основные элементы агрегата следующие:

  • понижающий трансформатор;
  • диоды;
  • охлаждающий модуль;
  • измерительные приборы;
  • регуляторы тока.

Принцип работы выпрямителя заключается в подаче перемененного тока на первичную обмотку понижающего трансформатора. За счет электромагнитной индукции на вторичной обмотке создается поток напряжения с уменьшенным значением V, и возросшей силой тока А. Холостой ход работы аппарата не должен превышать 48V.

Это напряжение поступает на диоды. В качестве последних используются кремниевые элементы. Диод является полупроводником, обеспечивающим прохождение тока только в одну сторону. Это устраняет колебание его частоты и в зону сварки подается уже постоянное напряжение.

Поскольку диоды при этом нагреваются, то рядом с ними располагаются радиаторы и вентилятор. Постоянный обдув холодным воздухом позволяет увеличить продолжительность активной работы устройства, без перерыва на охлаждение. Для контроля характеристик тока в систему устанавливаются амперметр и вольтметр. Многие модели снабжаются датчиком перегрева. При превышении показателей V срабатывает блок защиты, отключающий возможность сварки. Чтобы настраивать силу тока в соответствии с толщиной свариваемого соединения используется несколько видов регулировки.

Устройство выпрямителя

Не все оборудование может работать на переменном токе. Для их подключения к сети приходится использовать выпрямители-стабилизаторы напряжения. Они предназначены для создания в нагрузке постоянного тока. Основу такого прибора составляет схема, содержащая диод или вентиль, который может быть, как управляемым, так и не управляемым. В зависимости от используемых элементов различают следующие виды:

  • Механический;
  • Вакуумный;
  • Электронный.

Их главным назначением является преобразование тока. Однако большинство моделей создают пульсации сглаживание которых осуществляют фильтры.

Специфика выбора надежного сварочного выпрямителя

При выборе сварочного выпрямителя наиболее важными для покупателей выступает сразу несколько характеристик. Среди которых:

  • материал для сварки;
  • условия работы;
  • имеющиеся денежные средства.

В бытовом и профессиональном секторе наиболее оптимальным решением становятся однопостовые сварочные выпрямители. При своей достаточно приемлемой стоимости они обладают целым спектром очевидных преимуществ. Аппараты позволяют получать качественные сварные соединения в любых условиях, неприхотливы и дешевы в обслуживании. Они способны работать с наиболее распространенными видами сырья: углеродистые и низколегированные стали. Агрегаты легко обеспечивают постоянный ток в течение продолжительного периода времени для выполнения широкого спектра сварочных операций, включая наплавку и резку.

https://youtube.com/watch?v=u7kZJEIf4Y4

Общие данные

Сварочный выпрямитель – это классика оборудования для работ. Его применяют уже более 30 лет из-за того, аппарат обладает многими достоинствами.

Порой его выбирают чаще, чем трансформатор. Главной целью машины считают изменение переменного тока на статичный. Это нужно, чтобы произошел поджиг арки и сформировались качественные соединения.

В реальности все не настолько легко. Все компоненты состоят из большого количества элементов, которые активно участвуют в работе агрегата.

По причине того, что в работе выпрямителя не применены электронные компоненты, он считается более надежным, чем другие типы механизмов.

Это преимущество, потому что именно такой компонент в большинстве случаев ломается при сварочном процессе. В этом вопросе сварочный выпрямитель так же надежен, как и преобразователь.

Вы можете потеряться в большом разнообразии сварочных выпрямителей

Один важный момент, который важно учитывать – это то, что у них разная силовая часть. Выпускают машины на основе трансформатора, дросселя, тиристора и других особенностей

Вольт-амперная характеристика

Принцип действия тиристора наглядно демонстрирует его ВАХ. Она, как и характеристика обычного диода, расположена в I и III квадрантах и состоит из положительной и отрицательной ветвей. Отрицательная ветвь также подобна диодной и содержит участок, при котором прибор заперт — от нуля до Uпробоя. При достижении порогового напряжения происходит лавинный пробой.

Положительная ветвь требует внимательного рассмотрения. Если приложить к тиристору прямое напряжение и начать его увеличивать, то ток будет расти медленно – сопротивление закрытого полупроводникового прибора высоко. Это красный участок графика. При достижении определенного уровня тиристор скачкообразно открывается, его сопротивление уменьшается, падение напряжения также уменьшается, ток растет – синий участок. Этот участок характеризуются отрицательным сопротивлением, но прибор ведет себя здесь неустойчиво, с выраженной тенденцией перехода в открытое состояние.

Далее тиристор выходит в режим обычного диода – зеленая ветвь графика. Так работает диодный тиристор, а способность открываться при достижении определенного уровня называется динисторным эффектом.

Этот свойство также присуще трехэлектродному тиристору, но он используется в таком режиме крайне редко. Более того, при разработке схем этой зоны ВАХ избегают. У тринистора есть управляющий электрод, и включение практически всегда производится с его помощью. Если подать на УЭ ток, то тиристор откроется раньше достижения порогового напряжения (красный пунктир на ВАХ). Чем больше ток, тем раньше отпирание. Если ток достигнет определенного уровня (Iуэ>0), то тиристор откроется при любом напряжении анод-катод и будет вести себя подобно обычному диоду, пока не создадутся условия для выключения.

Выключить тиристор (диодный или триодный) сложнее. Для этого требуется, чтобы ток через прибор снизился до определенного уровня (почти до нуля). В цепях переменного тока тиристор может быть переведен в закрытое состояние после снятия управляющего воздействия естественным путем – при ближайшем переходе напряжения через ноль. На самом деле, запирание происходит раньше — когда при снижении напряжения ток снизится до порогового значения. Это зависит от величины нагрузки. В цепях постоянного тока приходится принимать более сложные решения. Например, запирать тиристор можно с помощью конденсатора, заряженного напряжением обратной полярности. При включении коммутационного устройства, он разряжается навстречу прямому току и компенсирует его до нуля.

Также существуют другие способы создания встречного тока, но их устройство еще сложнее. Например, использование колебательных контуров и т.п. Все это усложняет использование тринисторов и динисторов, поэтому относительно недавно были созданы управляемые тиристоры (их также называют двухоперационными). Их отличие в том, что отпирание и запирание осуществляется посредством воздействия на управляющий электрод. Это резко расширяет возможности применения данных полупроводниковых приборов.

Новое на alldoma.ru

В промзоне района Хорошево-Мневники построят новый жилой квартал!

Промышленную зону в районе Хорошево-Мневники на северо-западе столицы реорганизуют и благоустроят, сообщил главный архитектор Москвы Сергей Кузнецов.

Подробнее…

«Главстрой Санкт-Петербург» предлагает приобрести жилье комфорт-класса в ипотеку по ставке всего 0,5% годовых!

«Главстрой Санкт-Петербург» первым из застройщиков, базирующихся в Северной столице, предлагает в текущих условиях специальную ипотечную программу со ставкой 0,5% годовых на первый год.

Подробнее…

WE KNOW – новое имя !

Один из лидеров в сфере риелторских и консалтинговых услуг на рынке жилой недвижимости столицы официально объявил о начале работы под новым брендом. Теперь официально переименована в WE KNOW. Она больше не является частью консалтинговой компании S.A. Ricci и никак от нее не зависит.

Подробнее…

«Кортрос Live»: новый онлайн-формат общения с аудиторией ГК «Кортрос»!

Федеральный застройщик ГК «Кортрос» активно продвигает компанию и свои проекты, используя онлайн формат корпоративного YouTube канала. В рамках этого проекта топ-менеджеры и сотрудники компании рассказывают в прямом эфире о новостях группы, о преимуществах объектов ГК «Кортрос», специфике онлайн-сделок и отвечают клиентам на все интересующие вопросы.

Подробнее…

«Садовые кварталы» стали самым продаваемым элитным проектом 2020 года! Эксперты компании Est-a-Tet подвели итоги 2020 года на рынке элитных столичных новостроек и пришли к выводу, что жилой комплекс «Садовые кварталы», реализуемый в Хамовниках, стал самым востребованным проектом данного сегмента – в прошлом году в нем было продано более 17 тыс. кв. м жилья. Подробнее…

Принцип работы выпрямителей сигналов

Что такое выпрямитель? Устройство работает за счет свойств полупроводниковых радиоэлементов по пропусканию тока исключительно от анода к катоду. Поэтому при прохождении через устройство синусоиды переменного тока происходит обрезка отрицательной части волны. Таким образом на выходе радиоэлемента остается только положительная полуволна. Электрический ток подобного типа называется однополупериодным с пульсациями. От анода к катоду проходит сигнал только ½ всего времени. Колебания происходят от нуля до максимального значения.

Строение двухполупериодных устройств базируется на мосту из четырех вентилей, которые приводят к попаданию всех полуволн. При этом отрицательная полуволна инвертируется. Фактически строение двухполупериодных выпрямителей аналогично двум или более однополупериодным с катодами, направленными один на другой.

Полупроводниковые модели

Полупроводниковые выпрямители замечательно подходят для понижающих трансформаторов. Многие модификации выпускаются на базе коннекторных конденсаторов. Проводимость на входе у них не превышает 10 мк. Также стоит отметить, что полупроводниковые выпрямители отличаются по чувствительности. Устройства до 5 мВ способны использоваться при напряжении 12 В.

Системы защиты у них применяются класса Р30. Для подключения модификаций используются переходники. При напряжении 12 В параметр перезарузки в среднем равен 10 А. Модификации с обкладками выделяются высоким параметром рабочей температуры. Многие устройства способны работать от транзисторов. Для понижения искажений используются фильтры.

Схемные решения преобразователей на основе тиристоров

Преобразователь частоты

Особенностью схем на тиристорах является то, что они рассчитаны на работу с определенным характером нагрузки.

Последовательный и параллельный инверторы тока

Данный тип преобразователей имеет дополнительный конденсатор, включенный последовательно или параллельно нагрузке. Назначение конденсатора – обеспечение надежного запирания тиристоров, не участвующих в прохождении тока по силовой цепи. Для стабилизации тока через нагрузку вход инвертора тока содержит индуктивность, которая в идеальном случае должна стремиться к бесконечности.

Комбинированные схемы

Комбинированная последовательно-параллельная схема содержит два конденсатора и позволяет улучшить нагрузочные характеристики устройства. В частности, такая схема отличается большей устойчивостью при работе с малой нагрузкой.


Последовательная, параллельная и комбинированная схемы

Преобразователь напряжения Мак-Мюррея

Схема Мак-Мюррея включает в себя контур LC. Данный контур образуется из соединения конденсатора и катушки индуктивности через открытый в данный момент тиристор, закрывая противоположный.


Схема Мак-Муррея

Данное решение позволяет питать индуктивную нагрузку, например, устройства, в которых производится индукционный нагрев или сварка металлических конструкций.

Последовательный резонансный инвертор

В подобной схеме емкость конденсатора и индуктивность подобраны таким образом, чтобы на частоте преобразования LC контур находился в резонансе. Таким образом, управление тиристорами будет происходить на резонансной частоте.

Преобразование может вестись на более высокой частоте, что улучшает характеристики схемы из-за лучших условий переключения ключевых элементов.

Схема однополупериодного выпрямителя

При подаче переменного sin-идального напряжения на первичную обмотку трансформатора напряжение на зажимах вторичной его обмотки также будет переменным синусоидальным и будет равноU2=U2msinwt. Диод проводит электрический ток только в том случае, когда его анод относительно катода будет иметь положительный потенциал. Поэтому ток в цепи – вторичная обмотка, диод и нагрузка – будет протекать только в одном направлении, то есть в течение одной половины периода переменного напряженияU2. В результате этого ток, протекающий в цепи нагрузки, оказывается пульсирующим. Максимальное значение тока:

Im=U2m/RH, гдеRH– сопротивление потребителя постоянного тока.

Кривая получаемого в процессе однополупериодного выпрямления пульсирующего тока может быть разложена в гармонический ряд Фурье:

i=Im(1/π+1/2 sinwt-2/3π∙1 cos2wt-…).

Пульсирующий ток, как видно из выражения, кроме переменных составляющих содержит также и постоянную I=Im/π. Отсюда постоянная составляющая напряжения

U=IRH=Im/π∙RH=U2m/π.

Через действующее значение напряжения: U=√2 ∙U2/π.

Переменные составляющие характеризуют величину пульсаций тока и напряжения.

График работы однополупериодного выпрямителя

Для оценки пульсаций при какой-либо схеме выпрямления вводится понятие коэффициента пульсаций q, под которым понимается отношение амплитуды Aнаиболее резко выраженной гармонической составляющей, входящей в кривые выпрямленного тока или напряжения, к постоянной составляющей Aв тока\напряжения в выходной цепи выпрямителя:q=Am/AB.

Для схемы однополупериодного выпрямителя: q=0.5Im/(1/π ∙Im)=π/2. В течение половины периода, когда анод диода имеет отрицательный относительно катода потенциал, диод тока не проводит. Напряжение, воспринимаемое диодом в непроводящий полупериод, называется обратным напряжением Uобр. Обратное напряжение на диоде будет определяться напряжением на вторичной обмотке. Максимальное значение напряженияUобрm=U2m. Значит, вентиль надо выбирать так, чтобы [Umax обр]>=U2m.

Недостатки такой схемы выпрямления: большие пульсации выпрямленного тока и напряжения, а также плохое использование трансформатора, поскольку по его вторичной обмотке протекает ток только в течение половины периода. Такую установку используют в маломощных системах, когда выпрямленный ток мал.

Однофазные выпрямители

Основными схемами однофазных выпрямителей являются однополупериодная и двухполупериодная (мостовая или со средней точкой).

Однофазная однополупериодная схема является самой простейшей схемой выпрямителя.

Трансформатор преобразовывает сетевое напряжение первичной обмотки Uc в напряжение вторичной обмотки U2. Так как диод Д имеет одностороннюю проводимость, ток I2 будет протекать только при положительной полуволне вторичного напряжения, при отрицательной полуволне диод будет закрыт. Так как ток в нагрузке Rн протекает только в один полупериод, отсюда и название выпрямителя — однополупериодный.

К недостаткам однополупериодных выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД, высокий уровень пульсаций и большое обратное напряжение на диоде.

Двухполупериодные схемы выпрямления уже значительно интересней. Из них наибольшую популярность приобрела мостовая схема включения диодов.

Схема состоит из трансформатора и четырех диодов,собранных мостом. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ с нагрузкой. При положительном потенциале в точке a вторичной обмотки трансформатора ток пойдет по цепи точка a вторичной обмотки — A — диод Д1 — B — нагрузка Rн — D — диод Д3. К диодам Д2 и Д4 при этом приложено обратное напряжение, они заперты. При изменении направления Э.Д.С и тока во вторичной обмотке положительный потенциал появится уже в точке b вторичной обмотки трансформатора. Ток при этом пойдет по цепи b — C — диод Д2 — B — нагрузка Rн — D — диод Д4.

Таким образом ток в нагрузке не меняет своего направления. Кривые напряжения и тока на нагрузке повторяют (при прямом напряжении на диодах U np ≈ 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения.

Кроме мостовой схемы выпрямления может применяться двунаправленная схема.

Схема состоит из трансформатора со средней отпайкой на вторичной обмотке и двух диодов. Когда в точке a имеется положительный потенциал ток протекает по цепи a — диод Д1 — нагрузка Rн — отпайка вторичной обмотки. При положительном потенциале в точке b вторичной обмотки ток потечет по цепи b — диод Д2 — с — нагрузка Rн — отпайка вторичной обмотки.

На левом рисунке показана зависимость напряжения вторичной обмотки трансформатора от времени, на правом изменение тока нагрузки. Как следует из работы выпрямителя, направление тока в нагрузке неизменно. Вторичная обмотка трансформатора двухфазная и каждая фаза работает половину периода. Напряжение на нагрузке в любой момент равно мгновенному значению ЭДС фазы, работающей в данный момент.

К основным минусам данной схемы можно отнести необходимость делать отпайку вторичной обмотки трансформатора и большое обратное напряжение диода Uобр = 2U2м = 3,14U0, поэтому она не получила столь широкого распространения как мостовая схема.

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.

Запомним это выражение на дальнейшее. В нашем случае m=2 и  . Поскольку Ud считаем заданным, то

Из предыдущего выражения имеем:

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения Ud   и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;  

Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:

Заменив   получим:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

 Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток  Iв = Id/2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий

Adblock
detector